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Abstract
The rotational diffusion of a general-shape object (a molecule) in a flow
of uniaxial nematic liquid crystal is considered in the molecular field
approximation. The full corresponding Fokker–Planck equation is derived,
and then reduced to the limit of diffusion of orientational coordinates in a
field of uniaxial nematic potential and the flow gradient. The spectrum of
orientational relaxation times follows from this analysis. As a second main
theme of this work, we derive a complete form of microscopic stress tensor
for this molecule from the first principles of momentum balance. Averaging
this microscopic stress with the non-equilibrium probability distribution of
orientational coordinates produces the anisotropic part of the continuum Leslie–
Ericksen viscous stress tensor and the set of viscous coefficients, expressed in
terms of molecular parameters, nematic order and temperature. The axially-
symmetric limits of long-rod and thin-disc molecular shapes allow comparisons
with existing theories and experiments on discotic viscosity. The review
concludes with more complicated aspects of nonlinear constitutive equations,
microscopic theory of rotational friction and the case of non-uniform flow and
director gradients.
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1. Introduction

On the continuum level, the dissipation of energy in a liquid flow is determined by the viscous
stress tensor, which in the linear regime is proportional to the flow gradients with a factor of
viscous coefficient. Kinetic theory of viscosity has the aim of deriving this stress tensor, and
the viscous coefficients, from the molecular parameters, interaction forces and temperature,
thereby relating the kinetic linear response coefficient to the thermal fluctuations in the medium.
Kinetic theory of viscosity of classical isotropic liquids is based on a complicated and delicate
analysis of pair correlation functions out of equilibrium; it has a famous history of successful
developments [1–3] although by far not everything is understood in that field.

In this review, we describe an approach to non-equilibrium statistical theory describing the
hydrodynamics of nematic liquid crystals, the liquids with a spontaneously broken orientational
symmetry due to the anisotropic pair interactions between constituent particles (molecules).
In developing the nematodynamics we aim to justify prevalent phenomenological theories and
determine the underlying principles governing the orientational dynamics of the molecules
under simple shear flow. From a fundamental perspective, such studies reveal physical insights
which may help us to answer some of the most important questions in rheological studies of
nematic liquid crystals: to what extent does shear flow affect the molecular alignments? What
is the microscopic basis for nematic liquid crystals displaying flow-induced transitions into an
ordered or unstable state? Such questions represent typical phenomena abundant in physics
for which a simple physical analysis often reveals deep underlying principles, yet a detailed
and rigorous solution is necessary to confirm the analysis.

From a more practical perspective, the inherent nature of nematic liquid crystals to
acquire a preferred orientation of anisotropic molecules, and preserve it in the presence
of flow, provides a natural advantage to these materials to be used as precursors for the
manufacturing of high performance fibres. The preferred orientation and degree of alignment
of the molecules are found to have a predominant effect on the mechanical and thermal
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properties of the materials, and the optimization and control of preferred alignment is of
paramount importance. Unfortunately, a fundamental understanding of the factors affecting
the development of preferred alignment is still lacking, which may hinder their further
development.

In comparison to thermotropic nematics, i.e. dense liquids of anisotropic molecules, dilute
suspensions of non-spherical particles are reasonably well understood [4–6]. The intrinsic
viscosities of suspensions of oblate and prolate spheroids have been calculated allowing low
volume fraction viscosity measurements to be used to estimate particle aspect ratio. Studies
have been completed which extend the observations to the interactions of several particles.
Models that include the influence of Brownian motion have also been developed [7]. The
majority of these theoretical studies have focused on rod-shaped nematic molecules, as opposed
to disc-shaped objects or a more general case of anisotropic molecules with uniaxial symmetry.
A few notable exceptions are the studies of discotic viscosity by Volovik [8], using the Poisson
brackets approach, and by Hess [9, 10], using the geometric affine-transformation idea and then
allowing the non-perfect orientational order. Carlsson [11] has shown how the experimentally
observed anomaly in flow alignment of discotic systems must be related to the relative signs
and magnitudes of viscous coefficients, establishing their bounds. For all anisotropic shapes
of particles suspended in a fluid, as the concentration of particles increases, they no longer
rotate freely. Their motion becomes limited through excluded volume interactions as well as
long range inter-particle and hydrodynamic forces. For particles with a large length/thickness
ratio the effective excluded volume is much larger than their actual volume. As a result,
their relative motion will be geometrically constrained, and the physics becomes non-trivial
since many-particle correlations have to be considered. This situation will be applicable
to a thermotropic nematic liquid as well, where all molecules are equivalent and strongly
interacting with each other, thus demanding a consistent statistical–mechanical model. We
note as an aside that a parallel approach to the microscopic constraints and resulting viscosity
anisotropy in smectic liquid crystals has been developed as well [12].

In general, the orientation of the director in a flowing nematic is determined by four
external influences which tend to compete with, and in the steady-state balance one another.
The first effect is the influence of flow alignment; in the case of simple planar shear this tends
to rotate the director until it lies almost, though not quite, in the direction in which the fluid
is moving. Secondly there is the influence exerted by applied fields such as the magnetic
fields. Thirdly there is the influence exerted by the solid surfaces which contain the liquid
which affects the dynamics of thin layers (the strong anchoring effect). Finally the director
alignment may be influenced by the curvature elasticity of the nematic itself. In this work, we
will not consider the effects of external magnetic fields and surface anchoring effects, since
we are primarily interested in the bulk property of the system subject to shear flow without
imposing external fields.

There are traditionally two approaches towards studying the rheological behaviour of
liquid crystalline materials: the top–down macroscopic theory based on classical mechanics
such as the Leslie–Ericksen model [13, 14] or the time-dependent Ginzburg–Landau theory,
and the bottom–top molecular theory employing statistical approach that aims to derive
fundamental constitutive equations governing the dynamics of the variables we are interested
in. The macroscopic models assume the system being close to equilibrium and consider the
dynamics of the slow variables such as the director or the order parameter tensor, while a
complete microscopic theory allows us to consider even nematic systems driven far from
equilibrium. Such is the case for a tumbling nematic that is often observed in high shear
flow regime. Phenomenological models have existed for a long time to account for this
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phenomenon (see the key reviews [15–17] for reference), but as we shall see later, this effect
can be understood from a microscopic perspective as well.

Some of the earliest attempts on microscopic approach include works by Diogo and
Martins [18]. They consider the viscosity coefficients to be proportional to the characteristic
relaxation time which is related to the probability of overcoming the nematic potential
barrier during molecular reorientation. Although such consideration does give microscopic
expressions for the Leslie coefficients, their model was not constructed as a self-consistent
statistical theory, and contains too many free parameters. Therefore, a more elaborate statistical
theory was required. Following the pioneering work of Hess [4], outlining the principles of
rotational Fokker–Planck equation in non-equilibrium anisotropic fluids, Doi [19] made a
major step in developing the statistical model that describes the hydrodynamics of rod-like
nematic liquid crystals. Their work relied on averaging the microscopic stress tensor over
the non-equilibrium distribution function; however, their expression for the stress tensor was
not accurate and gave only the symmetric part of it. To introduce antisymmetric elements to
the stress tensor they invoke an external magnetic field in an ad hoc manner, which makes
it hard to reconcile with intrinsic antisymmetric viscous stress naturally in liquid crystals in
the absence of external field [20, 21]. Following that work, Osipov and Terentjev suggested
another approach [22] which assumes that the overall non-equilibrium distribution function
should consist of an original equilibrium part and an additional non-equilibrium part due to
the flow gradients, but their derivation of microscopic stress tensor has not been complete and
their derived Leslie coefficients are not always consistent with flow alignment experiments.

All these approaches either suffer from some theoretical shortcomings or they are confined
to specific nematic systems composed only of long rod-like molecules. Although the later
analysis is highly relevant to the rheology of liquid crystalline polymers [23], a more elaborate
microscopic theory on the nematodynamics of spheroidal molecules will serve a greater
purpose to a wider class of nematic systems. In reviewing this problem we generally follow the
approach of [22], improving on several shortcomings and expanding the range of applicability.
We are also motivated by recent interests in the studies of discotic nematic liquid crystals. To
our present knowledge, there have been little theoretical studies for the case of discotic nematic
liquid crystalline phases in shear flow, though lately there has been a revival in experimental
and theoretical interests in these materials due to their applications in high performance fibres
(e.g. mesophase pitch-based carbon fibres, Kevlar) [24, 25]. Another example that highlights
many important technological applications in these materials is kaolin clay suspensions (plate-
shaped particles) which have seen limited rheological characterization [26]. The work outlined
in this review should assist in characterizing some of the main microstructure features and
textures developed in these materials under flow.

The outline of this review is as follows. In section 2, we discuss theoretical concepts of
non-equilibrium statistical physics and hydrodynamics which allow us to derive the kinetic
equation governing the evolution of the orientation distribution function of the molecules. We
also attempt to solve the kinetic equation which gives us the dominant orientation relaxation
time. In section 3, we demonstrate how the microscopic stress tensor can be derived using
classical equation of motion for fluids. In section 4, we put together the results of kinetic
modelling and the microscopic dynamics to derive the average macroscopic stress tensor. Its
coefficients are a complete set of the Leslie’s coefficients, expressed in terms of molecular
and order parameters. We discuss their validity, followed by a brief discussion on the unusual
nonlinear effects which exist in discotic nematics only. Section 5 outlines attempts to
derive the rotational frictional constant from a microscopic description, focusing primarily
on discotic nematics. Finally in section 6, we consider more realistic situations when spatial
inhomogeneities and domain structures (such as those with point defects or disclinations) exist
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in nematic liquid crystals, and construct a new molecular theory to account for the Ericksen
stress in the complete Leslie–Ericksen theory, and the corresponding Frank elastic constants.
We do not have a separate concluding section as each individual chapter ends with its own
discussion and conclusions; there we also highlight the limitation of the current state of theory
and open questions in this field.

2. Kinetic theory

In this section, we discuss some of the concepts of rotational diffusion and Brownian motion.
We demonstrate that the dynamical evolution of a general uniaxially-anisotropic molecule
in rotational motion in a nematic potential can be described essentially by a multi-phase
variable Fokker–Planck equation. The solutions of the kinetic equation in the weak flow limit
suggest a rich spectrum of relaxation times. The dominant relaxation mode depends linearly
on the rotational friction constant and exhibits an Arrhenius activation dependence on the
inter-molecular coupling strength.

2.1. Rotational Brownian motion and hydrodynamics

A nematic fluid contains many anisotropic molecules, all of similar size in a dense phase. On
a mean-field level, each molecule can be considered to be immersed in a thermodynamic bath
which acts as a source of background fluctuations. We can therefore consider each molecule
to undergo rotational Brownian motion since it experiences a constant flux of stochastic
torques. Historically, ideas or rotational diffusion go back to Debye [27, 28] who, following
the Langevin theory of paramagnetism [29] and incorporating the new at the time ideas of
Brownian motion [30], have studied permanent electric dipoles in rotary thermal motion.
Debye’s theory was viewed as a significant achievement and provided a foundation for the
study of rotary diffusion, leading to a basic kinetic equation widely used for the modelling
of fluctuating systems. It was later superseded by the Onsager theory [31], which itself
was superseded by the work of Kirkwood [32]. In all these cases, however, the rigid-body
molecule was considered a sphere. The problem of an arbitrary-shaped rigid body executing
rotational Brownian dynamics is however a technically complicated one. The reason for this is
at least three-fold : (1) rotations about different axes do not commute, (2) the range of relevant
variables, the angles specifying the body’s orientation, is finite. This introduces the peculiar
nature of the topological constraints to the system. (3) Relation between angular velocity and
angular momentum is tensorial, not vectorial, as in translational motion.

Despite these complications, the rotational Brownian motion in a mean-field potential is
thoroughly described within the framework of Smoluchowski equation. Jeffery [33], Hinch
[7], Hess [4] and Maguire [34] solved similar problems for a dilute suspension of rod-like
particles in a flow. We note that in addition to the rotational Brownian motion the molecules
also execute translational random motions which we will not deal with in this review. The
orientational degree of freedom is described by the dynamical variable u, which is the unit
vector defining the direction of principal axis (parallel to the long axis for rod-like molecules
and perpendicular to the plane of a disc-like molecule).

The rotational Brownian motion can be best visualized as the trajectory of u(t) on the
surface of the sphere defined by |u| = 1. The movement of u(t) can be considered as
random steps due to the thermal stochastic force and an external potential (see figure 1). The
hydrodynamics of rotational motion can be addressed by first considering a general spheroid
immersed in a stationary viscous liquid. We consider the molecule rotating with an angular
velocity ω by the influence of a torque Γ exerted by an external field U(u). Consider a small
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Figure 1. Rotational Brownian diffusion by the unit vector u along the molecular axis, which
explores the space on the surface of unit sphere.

rotation δϕ of the molecule that changes u to u + δϕ × u. The work needed for this change
is −Γ · δϕ, which must be equal to the change in U, i.e.,

−Γ · δϕ = U(u + δϕ × u) − U(u) = (δϕ × u) · ∂U

∂u
= δϕ ·

(
u × ∂U

∂u

)
. (1)

Hence

�β = −∂βU, where ∂β =
(

u × ∂

∂u

)
β

. (2)

The operator ∂β is called the rotational operator that plays the role analogous to the gradient
operator ∇ in translational motion. Now if the molecules are immersed in a flowing medium,
there will be a residue angular velocity (see Jeffrey [33] for details of separating the body
uniform rotation). For a spheroid with aspect ratio p = a/b this angular velocity is given by

Ω = u ×
{

p2

p2 + 1
g ·u − 1

p2 + 1
gT · u

}

= u ×
{

1

2

(
p2

p2 + 1

)
(gs + ga) · u − 1

2

1

p2 + 1
(gs + ga)T · u

}

= 1

2

p2 − 1

p2 + 1
(u × gs · u) +

1

2
(u × ga ·u)

= 1

2

p2 − 1

p2 + 1
(u × gs · u) +

1

2
∇ × v − 1

2
(u · ∇ × v)u (3)

where gαβ is the velocity gradient ∇βvα , and gs
αβ and ga

αβ are the symmetric and asymmetric
part of this velocity gradient, respectively. Note that Ω is perpendicular to u.

2.2. Langevin equation

The stochastic effects on the particle’s rotational motion a in viscous medium can be considered
in a coherent fashion using the method of Langevin stochastic equation and the Fokker–Planck
kinetic equation. The latter allows us to find explicit dynamical evolution of the distribution
function in terms of the orientation of the director. To see how this can be applied to anisotropic
fluid motion we first consider the dynamical equations of motion for the particle’s angular
velocity.
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We first note that we can always diagonalize the moment of inertia tensor of a uniaxial
particle; in the frame-independent form:

Iαβ = I⊥δαβ + (I‖ − I⊥)uαuβ (4)

where u is the unit vector of molecule’s principal axis. The instantaneous angular velocity of
the molecule is

Ψ̇ = ψ̇u + ω (5)

where the first term on the right-hand side denotes angular velocity about the molecular
axis, while ω is the transverse angular velocity due to rotational motion perpendicular to the
molecular axis, i.e. ω ⊥ u.

For a molecule moving with an instantaneous angular momentum L, we can immediately
write down its expression,

Lα = Iαβ�̇β = I‖ψ̇uα + I⊥ωα. (6)

The rotational motion thus obeys the equation of motion:

L̇α = I‖ψ̈uα + I⊥ω̇α + I‖ψ̇u̇α. (7)

The first two terms on the right-hand side are the expected rotational torques about I‖ and I⊥
respectively, while the last term represents the gyroscopic effect. This term vanishes for the
case of an infinitely long and thin rod (I‖ � I⊥) but may be large for disc-like molecules. We
will soon see that this term gives rise to non-trivial modifications to the kinetic equation and
the stress tensor.

At this stage, we have to be careful about the meaning of ω. To evaluate all physical
observables in the laboratory frame we have to make a coordinate transformation from the
body’s frame to the laboratory frame. Therefore for a molecule rotating with an instantaneous
angular velocity Ψ̇, the transverse angular velocity ω in the body frame is transformed in the
following manner:

dω

dt

∣∣∣∣
lab

= Ψ̇ × ω +
dω

dt

∣∣∣∣
body

= −ψ̇u̇ + u × ü. (8)

Having obtained the general equation of motion in equation (7), we can write down the
Langevin equation in terms of a vector stochastic torque ξ and a possible external torque Γ,

L̇α = I‖ψ̈uα + I⊥ω̇α + I‖ψ̇u̇α

= −λαβ(ψ̇uβ + ωβ − 
β) + �α + ξα (9)

where λαβ = λ⊥δαβ + (λ‖ − λ⊥)uαuβ is the uniaxial frictional constant tensor and the vector
(ψ̇uβ + ωβ − 
β) is the net angular velocity of the molecule relative to that of the reservoir,
which is given by (3).

To get the equation of motion for the dynamical variable ψ̇ , we can multiply the above
equation by uα to eliminate the gyroscopic term,

I‖ψ̈ = −λ‖ψ̇ + (Γ ·u) + (ξ · u) (10)

where we used the fact that both ω’s are perpendicular to u. Equation (10) is the equation of
motion for the dynamical variable ψ̇ dictating the angular rotation about the molecular axis.

Substituting (10) into equation (9) we obtain a similar equation of motion for the transverse
angular velocity ω,

I⊥ω̇α = −(δαβ − uαuβ)λβl(ωl − 
l) + (δαβ − uαuβ)�β

+ (δαβ − uαuβ)ξβ − I‖ψ̇(ω × u)α. (11)

Note the natural occurrence of the perpendicular projection operators δαβ − uαuβ in this
expression.
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2.3. Generalized Fokker–Planck equation

The rotational diffusion of the anisotropic molecules is captured by the Fokker–Planck equation
which describes the dynamical evolution in time of the system’s phase-space distribution
function W(ω, ψ̇,u, t) [35]:
∂W

∂t
= − ∂

∂uα

(u̇αW) − ∂

∂ωα

(ω̇αW) − ∂

∂ψ̇
(ψ̈W) +

1

2

∂2

∂ωα∂ωβ

×
[

1

I 2
⊥

〈(ξα − uαξγ uγ )(ξβ − uβξµuµ)〉W
]

+
1

2

∂2

∂ψ̇2

[
1

I 2
‖
uα

ψ

αβuβW

]
(12)

where 
ψ

αβ(t − t ′) = 〈ξα(t)ξβ(t ′)〉 is the correlation function between the vector stochastic

torque ξ that perturbs ψ̇ . It can be shown directly that the following form for 
ψ

αβ indeed
satisfies the fluctuation–dissipation theorem,


ψ

αβ = ⊥δαβ + (‖ − ⊥)uαuβ. (13)

2.3.1. Reduced Fokker–Planck equation. We next consider obtaining the coordinate
dependence of the distribution function. We note that there are intrinsically two time-scales
of interest, usually separated by a significant margin in liquids (section 5 has a much more
extended discussion of these characteristic times, also applicable to the translational motion).
The first of these scales is a fast relaxation time after which the system reaches the equilibrium
Maxwell velocity distribution, given by the balance of inertial and friction parameters:

τω = I⊥
λ⊥

. (14)

The second is the relatively slow relaxation time

τu = (�θ)2

2Dr

(15)

after which the system reaches the equilibrium Boltzmann distribution of its angular
coordinates, essentially controlled by the corresponding diffusion rate. �θ is the free angular
volume the molecule rotates in the diffusion limit and Dr is the rotational diffusion constant
related to the microscopic friction constants via the fluctuation–dissipation theorem. This
is the characteristic time for the relaxation of fluctuations of the system back to equilibrium
under Brownian forces. Their ratio we define as a small parameter:

α2 = τω

τu

= 2kT I⊥
λ2

⊥
� 1 (16)

where we omit the dimensionless term (�θ)2. The smallness of α is not obvious at this stage,
but will become apparent later. Substituting the dynamic part of equations (10) and (11) into
equation (12), and introducing the dimensionless variables:

τ = λ⊥
I⊥

t, ω′ =
√

I⊥
kT

ω, ψ̇ ′ =
√

I‖
kT

ψ̇, (17)

we obtain the dimensionless form for the generalized Fokker–Planck equation,
∂W

∂τ
+ α∂β(ω′

βW) + α
∂

∂ω′
β

(δαβ − uαuβ)

(
�β

kT
W

)

= ∂

∂ω′
α

[
ω′

α − 
′
α +

1

2

∂

∂ω′
β

(δαβ − uαuβ) + αAψ̇ ′(ω′ × u)α

]
W

+ �A2 ∂

∂ψ̇ ′

(
ψ̇ ′ − φ +

1

2

∂

∂ψ̇ ′

)
W (18)
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with the shorthand notations

A =
√

I‖
I⊥

, � = λ‖
λ⊥

, φ = 1

2
u · ∇ × v. (19)

To ease the notations we shall suppress the primes of ω′ and ψ ′; it will be explicitly indicated
when we return to full-dimensional variables later on.

2.3.2. Elimination of fast variables. We now describe in a qualitative fashion the meanings
of the two time-scales introduced in the previous section. The situation where the variables
describing a phenomenon can be divided into two sets, one evolving on a rapid time-scale
and one evolving on a slow time-scale, is of frequent occurrence in physics. It is often
desirable to eliminate or average over the rapid variables in order to study the dynamics of
the slow variables. Such coarse-graining is done by assuming that the velocity distribution of
the Brownian particle rapidly thermalizes while the coordinate distribution remains far from
equilibrium for a much longer time. This means that the velocity distribution is close to a
Maxwell distribution while the position distribution still has not evolved too far from the initial
distribution. The equation, obtained after integrating out the fast variables by estimating the
phase distribution function to be the product of the reduced distribution function in terms
of the slow variable and a Maxwell distribution for fast variables, is formally known as
the Smoluchowski equation [36]. We note that some authors use the term ‘Fokker–Planck
equation’ interchangeably with ‘Smoluchowski equation’. Here we distinguish (after the
original papers of Fokker [37] and Planck [38]) the case when the additional degrees of
freedom represent velocity, strictly reserving the term ‘Smoluchowski equation’ for cases in
which the degrees of freedom represent position or configuration (after Smoluchowski [39]).
The basic assumption that allows this distinction is that thermalization of velocities occurs on a
time-scale short with respect to the time for appreciable changes in the positional distribution;
it is almost always satisfied in the high friction (overdamped) limit.

We can apply the above concepts to the case of a nematic to obtain the coordinate-only
Smoluchowski equation. The fast variables in this case are the angular velocity both along and
perpendicular to the director axis (ω and ψ̇) while the slow variable is the angular orientation
u(t). Assuming the quasi-equilibrium state when the longitudinal angular velocity distribution
function has thermalized, we can approximate

W(ω, ψ̇,u, t) = exp
{− 1

2 (ψ̇ − φ)2
}
W ′(ω,u, t). (20)

Substituting this into equation (18) and integrating over ψ̇ eventually gives the angular velocity
dependence of W ′(ω,u, t):

Ẇ ′ = α∂β(ωβW ′) + α
∂

∂ωβ

(δαβ − uαuβ)
�β

kT
W ′

= αAφ(u)
∂

∂ωβ

[(ω × u)βW ′] +
∂

∂ωα

[
ωα − 
α + (δαβ − uαuβ)

∂

∂ωβ

]
W ′.

Introducing a relative velocity Oα = ωα − 
α , we may naively proceed with integration over
the remaining fast variable ω using

W ′(ω,u, t) = e− 1
2 O

2
w(u, t). (21)

This however gives the trivial equation

ẇ + α∂β(
βw) = 0 (22)

with the diffusion term missing from the equation. We conclude that the non-trivial
Smoluchowski equation with the required diffusion term must come from adding small
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corrections to the distribution function that contains the ‘last bits’ of non-relaxed Maxwell
distribution. Hence we suggest that

W ′(ω,u, t) = e− 1
2 O

2
[w(u, t) + αy(O,u)] (23)

where the smallness is controlled by the natural parameter—the ratio of relaxation times
α � 1, and the form of the correction term y(O,u) is to be determined self-consistently.
Using (23) instead of (21), and neglecting terms of second orders in α, the equation transforms
into

ẇ(u, t) + α
β∂βw + αOβ

[
∂βw + 
α∂α
βw − �β

kT
w + Aφ(Ω × u)βw

]

+ αOαOβ∂α
βw = α(δαβ − uαuβ)

[
∂2y

∂Oα∂Oβ

− Oα

∂y

∂Oβ

]
.

Assuming that y = a + biOi + cijOiOj we determine uniquely the coefficients bi and cij

cij = −1

2
w∂i
j (24)

bj = −∂jw − ωi(∂i
j )w +
�j

kT
w − Aφ(u)(Ω × u)jw. (25)

Integrating over the fast variable of relative angular velocity Oi , we finally have the desired
dimensionless Smoluchowski’s equation for the coordinate-only distribution function w(u, t),
which we will call here the orientational distribution function:

ẇ + α∂β(
βw) = α2∂β

(
∂βw − �β

kT
w

)
+ α2∂β(
α∂α
βw)

+
A

2
α2∂β[(u · ∇ × v)(Ω × u)βw] + α2∂β[
α(∂α
β)w]. (26)

The right-hand side now contains small but non-vanishing terms proportional to α2 (compare
with equation (22) where this was missing in the leading order in α). The first term on the
right-hand side gives the diffusional term in a non-equilibrium system with external potential,
which describes rotational diffusion mechanism. The term α∂β(
βw) incorporates the linear
effects of perturbation due to external flow.

2.3.3. Nonlinear effects. The last two terms in equation (26) deserve further discussion. We
note that these terms have not been shown in previous work, e.g. [19, 22], but their presence
is necessary to describe novel nonlinear effects due to higher flow and intrinsic geometrical
shape of the molecules. The term 1

2α2A∂β[(u ·∇ × v)(Ω × u)βw] reveals the gyroscopic
motion of the molecules due to the non-vanishing moment of inertia along the molecular axis.
This term is commonly neglected for thin rods with A = √

I‖/I⊥ � 1. This however is
not the case for a discotic, when I‖ and I⊥ are comparable. One expects that this gyroscopic
effect will contribute essentially to the viscous torques and the antisymmetric stress tensor, and
modify the ‘shape’ of the equilibrium distribution function. This conjecture will be pursued
and verified in a quantitative fashion in section 4.

On the other hand, the second term α2∂β[
α(∂α
β)w] arises as a result of algebra. This
term vanishes in the weak-flow limit (small Ω) and will be present in both isotropic and
anisotropic liquids. It therefore constitutes more trivial higher order corrections to the overall
stress tensor due to stronger external flow. It may explain the changes in the linear viscosity
for a general spheroidal nematic before tumbling sets in, where the whole physical basis of
the linear model breaks down, but it does not introduce any new symmetries into the problem.
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2.4. Solving the kinetic equation

There is an intrinsic time-scale that may be related to the typical relaxation times of the
orientational distribution function which may be obtained via solving the kinetic equation. In
fact, as we will see shortly, the solutions give rise to a spectrum of relaxation times that relate
to the relaxation of the various normal modes of angular rotations. This relaxation can be
observed macroscopically in the relaxation spectrum of the order parameter [40].

The standard way to solve the nonlinear integral kinetic equation in the angular space is to
expand the distribution function in spherical harmonics and solve the resulting equations for
the expansion coefficients sometimes numerically. Although this method is always available,
we can gain some insights by solving it analytically using a simple eigenfunction expansion.
For the sake of simplicity, we rewrite the Smoluchowski equation (26) in zero flow, in the
following form:

∂w

∂t
= −�(u)w(u, t) (27)

where �(u) is a linear differential operator:

�(u)w(u, t) = −α2∂k

(
∂kw +

∂kU

kT
w

)
. (28)

Let wn be the eigenfunctions

�(u)wn = µnwn. (29)

Expanding the distribution function in terms of the complete orthogonal set of eigenfunctions:

w(u, t) =
∑

n

an(t) wn(u), (30)

we obtain the time dependence of coefficients an(t), an(t) = an(0) e−µnt . The equilibrium
distribution function weq(u) is an eigenfunction which by definition has infinite relaxation
time. The eigenvalue being the inverse of the relaxation time therefore is 0, corresponding to
the eigenfunction w0 with n = 0. Therefore, the full solution takes the form

w(u, t) = weq(u) +
∑
n=1

an(0) e−µnt wn(u) (31)

where a0 = 1 by normalization. Since in statistical equilibrium ẇeq = 0, substituting
equation (31) into (27) gives

∂k

[
∂kwn +

∂kU(u ·n)

kT
wn

]
= −µn

α2
wn (32)

where U(u ·n) is the mean-field potential, which depends on the polar angle θ only.
Equation (32) is very similar to solving the Schrödinger’s equation in quantum mechanics.
In this case, the external potential has to be modified. This mapping is formally known as
the Darboux transformation or supersymmetry [41]. The operator of course has to be made
Hermitian but this can be achieved through a simple transformation [42].

Expanding the rotational operator ∂k in spherical coordinates and writing the eigenfunction
of (32) as wn = fn(θ)weq , where weq ≡ exp(−U(θ)/kT ), we finally obtain the following
differential equation :

∂2fn

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂fn

∂θ
= −µn

α2
fn. (33)
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fn depends on θ since, for rotations of a spheroid, the general solution of equation (33) must
be an eigenfunction expansion in terms of the Legendre polynomials Pn(cos θ). Equation (33)
can be rearranged to give

eU(θ)/kT

sin θ

∂

∂θ

[
eU(θ)/kT sin θ

∂fn

∂θ

]
= −µn

α2
fn. (34)

Rearranging the equation further and taking care of the constants of integration, we finally
obtain the following self-consistent integral equation:

fn(θ) = C − µn

α2

∫ θ

0

eU(x)/kT

sin x
dx

∫ x

0
wn(z) sin z dz. (35)

Multiplying e−U(θ)/kT on both sides of the equation,

wn(θ) = e−U(θ)/kT

[
C − µn

α2

∫ θ

0

eU(x)/kT

sin x
dx

∫ x

0
wn(z) sin z dz

]
. (36)

At this stage, we introduce the method of iterations [41]:

wn(θ) = w0 +
µ1

α2
w1 +

(µ1

α2

)2
w2 + · · · (37)

where µ1 is the smallest non-vanishing coefficient corresponding to the first eigenfunction
w1. This method will be justified later, when the perturbation coefficient µ1/α

2 is shown to
be small.

Substituting the solution with only the leading terms in µ1 and comparing the terms
explicitly, we have the relation

wn(θ) = e−U(θ)/kT e−U(0)/kT w0(0)

[
1 − µ1

α2

∫ θ

0

eU(x)/kT

sin x
dx

∫ x

0
e−U(z)/kT sin z dz

]
. (38)

A conceivable boundary condition for any eigenfunction is that the distribution function must
vanish at θ = π , i.e., wn(π) = 0, as it must do since wn(θ) is a single-valued function. This
boundary condition gives

1 − µ1

α2

∫ π

0

eU(x)/kT

sin x
dx

∫ x

0
e−U(z)/kT sin z dz = 0. (39)

The integrals can be evaluated using the saddle-point approximation. In Maier–Saupe mean-
field approximation, U(θ) = −JS2 cos2(θ), where J denotes the mean-field coupling strength
(an explicit form for the energy constant J will be discussed in section 5) and S2 is the
principle scalar order parameter of uniaxial nematic phase, discussed in much greater detail in
section 4. The ratio q = JS2/kT 
 4.5 at the nematic transition, hence justifying the method
of saddle-point approximation where JS2/kT � 1. Recovering the full-dimensional form
finally gives the following value for µ1:

µ1 = 4

π
q

3
2 e−qDr = 4

πλ⊥

(JS2)
3/2

(kT )1/2
e−JS2/kT (40)

where Dr = kT /λ⊥ is the rotational diffusion constant and λ⊥ is the friction constant for the
molecular rotation about any axis parallel to the plane of the disc. We now return to justifying
the perturbation in terms of the small parameter µ1/α

2. In dimensional form, we have
µ1

α2
−→ µ1λ⊥

kT
= 4

π
q

3
2 e−q . (41)

This is indeed small in the limit of large q and justifies the perturbation expansion. The inverse
of µ1 gives the dominant (longest) relaxation time

τ1 = π

4q3/2Dr

eq = πλ⊥
4

(kT )1/2

(JS2)3/2
eJS2/kT (42)
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which gives a dependence similar to the relaxation time for the molecular director correlation
function 〈u(t)u(0)〉 = e−t/τr , where τr = 1

2Dr is the rotational correlation time [23]. For a
typical nematic liquid, Dr 
 108 s−1, and τ1 
 10−7 s. This result agrees well with typical
molecular relaxation times for the principal tumbling motion [43]. Also, this time-scale is
usually small compared to the typical flow rate hence justifying the validity of the continuum
Leslie–Ericksen description for nematics in flow (see section 3). In a passing remark, we note
that this problem can also be solved in a simpler way, with inspiration from Kramers problem
on a particle’s passage over a potential barrier [41]. In other words, the relaxation mechanisms
for rotational motion in liquid crystals are similar to the overcoming of the potential barriers
imposed by the average medium in a mean-field.

The fact that the rotational diffusion of a nematic liquid crystal is associated with a rich
spectrum of relaxation times is due to higher order modes of rotational motion contained
in (37), involving spherical harmonics in azimuthal and polar coordinates. It could also be
attributed to the generic non-spherical shape of the molecule and the anisotropic rotatory
diffusion tensor. The various relaxation modes and times correspond to the non-collective
relaxations around different symmetry axes of the molecules. This result agrees with Diogo’s
conclusion [18] that the relaxation times for the flipping motions of the molecules obey
the Arrhenius law. The exponential factor accounts for the probability that the reorienting
molecule has enough energy to overcome the potential barrier due to intermolecular nematic
potential. In reality, however, we may need to consider the free volume effects which exist
even in the absence of nematic potential. This would give rise to the Vogel–Fulcher type of
glassy relaxation [44]. On the other hand, the explicit dependence of the relaxation time on the
rotational friction constant is expected due to slow decay in the presence of high friction. A
typical application of the rotational diffusion problem is observed in the dielectric relaxation
of nematics in the presence of an external electric field [40, 43], where more than one Debye
relaxation times are found corresponding to rotations around the long or short molecular axis.
Similar phenomena are also observed via NMR [43].

3. Viscous stress tensor

In this section, we discuss the non-equilibrium transport phenomena in a nematic liquid.
We briefly review the classical Leslie–Ericksen theory and then concentrate on the so-called
microscopic stress tensor. This is a key concept describing the transfer of linear momentum
of an individual anisotropic particle (molecule). We approach this discussion using classical
kinetic theory of simple fluids, and then relate it to the macroscopic (observable) stress tensor.

3.1. Hydrodynamics of a uniaxial fluid

A nematic liquid crystal flows easily like a conventional liquid consisting of similar small
molecules. The state of alignment however turns out to be rather complicated. In the first
place, the flow depends on the angles the director makes with the flow direction and with
the velocity gradient. Secondly, the translational motions are coupled to inner, orientational
motions of the molecules. Consequently, in most cases the flow disturbs the alignments
and causes the director to rotate. From the theoretical point of view the coupling between
orientation and flow is a delicate matter.

The hydrodynamics for an isotropic classical fluid is well studied [2, 3]. The approach is
to treat the fluid as a continuous medium and any small volume element is always assumed
to be so large that it still contains a very great number of molecules. The dynamical situation
is specified by the fluid velocity field v(r, t), and by any two thermodynamic quantities
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Figure 2. Three principal geometries of simple shear with a constant (fixed) director field,
corresponding to the three Miesowicz coefficients.

pertaining to the fluid, for instance the pressure p(r, t) and the density ρ(r, t). The condition
of incompressibility is always assumed, ∇ · v = 0. The equation of motion is then given by
the linear Navier–Stokes form:

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + ∇σvisc (43)

where the right-hand side denotes the total force, which comes from two contributions: the net
pressure gradient and the viscous stress term. We have neglected the presence of additional
external forces such as the potential term. The classical viscous stress is given by

σαβ = η

(
∂vβ

∂xα

+
∂vα

∂xβ

)
≡ 2ηgs

αβ (44)

where η is the viscosity coefficient.
For a simple shear flow in a nematic liquid, the measured viscosity coefficient depends

on the orientation of the director n. The direction of n can be specified by the angles φ

and θ . If the orientation of the director is fixed by external forces (for instance by a strong
magnetic field), we can define three geometries of simple shear as ηa : φ = 90◦ θ = 90◦

for the director normal to the shear plane; ηb : φ = 0◦ θ = 0◦ for director parallel to flow
direction; ηc : φ = 0◦ θ = 90◦ for the director parallel to velocity gradient (see figure 2).
The three coefficients ηa, ηb and ηc are often called the Miesowicz coefficients.

3.2. Leslie–Ericksen theory

So far we have been concerned with the motion of a nematic liquid in which the orientation
of the director is fixed. If we lift this restriction, we will have to consider an extra degree
of freedom associated with the orientation of the director n(r, t), which may introduce local
unbalanced torques in the system. The phenomenological linear hydrodynamics of nematics
is adequately described in the context of Leslie–Ericksen (LE) theory, by considering the
entropy sources, due to all friction processes in the fluid. In short, and keeping the notation
close to the definitive de Gennes’ monograph [43], the LE approach describes the dissipation
due to a decrease in the stored energy,

T Ṡ =
∫ {

σ s
αβgs

αβ + hαNα

}
d3r (45)

where gs
αβ denotes the symmetric velocity gradient and hα is the molecular field, representing

the local torque due to the variation of nematic director [43]. Also, the corotational derivative

N = ṅ − ν × n (46)
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represents the rate of change of the director with respect to the flow background, and
ν = 1

2∇ × v is the flow rotation angular velocity.
Another approach, proposed by the Harvard group [45], assumes that the velocity field is

sufficient to specify the state, and the orientation of the director is deduced from the gradients
of v. In this picture, a rotation of the director can only occur in the presence of a non-uniform
flow. There is however experimental evidence to show that this choice of state variable is not
sufficient to describe a nematic, while the LE choice is adequate [46].

In irreversible processes, it is customary to write the entropy source as the product of
‘flux’ by the conjugate ‘force’ [47]. Choosing σ s

αβ as the force conjugate to gs
αβ and hα as the

force conjugate to Nα , we can write, in the limit of weak flux, the following linear functions
of the fluxes for the forces, which satisfy the symmetry properties of uniaxial nematics:

σ s
αβ = ρ1δαβgs

µµ + ρ2nαnβgs
µµ + ρ3δαβnγ nµgs

γµ + α1nαnβnµnρg
s
µρ + α4g

s
αβ

+ 1
2 (α5 + α6)

(
nαnµgs

µβ + nβnmugs
µα

)
+ 1

2γ2(nαNβ + nβNα) (47)

hµ = γ ′
2nαgs

αµ + γ1Nµ. (48)

Note that all the coefficients ρ, α, γ have the dimensionality of viscosity, and the Onsager’s
symmetry of kinetic coefficients [47] implies that γ ′

2 = γ2.
If the liquid is incompressible

(
gs

µµ = 0
)
, we arrive at the Leslie–Ericksen theory where

the total viscous stress tensor reads

σLE
αβ = α1nαnβnρnµgs

µρ + α4g
s
αβ + α5nαnµgs

µβ + α6nβnµgs
µα + α2nαNβ + α3nβNα, (49)

where the viscosity constants α1, . . . , α6 are called the Leslie coefficients. In the isotropic
phase, all of them vanish except α4, which becomes the isotropic shear viscosity coefficient
η. They have to fulfil the Onsager reciprocity, which for a nematic is known as the Parodi
relation [48], α2 + α3 = α6 − α5. So effectively there are only five independent coefficients.
Three of them are connected with the symmetric part of the stress tensor and the other two
with the anti-symmetric part

σa
αβ = γ1

2
(nβNα − nαNβ) +

γ2

2

(
nβnµgs

µα − nαnµgs
µβ

)
(50)

with

γ1 = α3 − α2 and γ2 = α2 + α3 ≡ α6 − α5. (51)

The coefficients γ1 and γ2 determine the viscous torque acting on the molecule: γ1 is
characteristic of pure director rotations and γ2 describes the contribution due to a shear
flow. The equation of motion of the director reads

n × (γ1N + γ2n · gs) = 0. (52)

If we assume undeformed director field, the conservation law for angular momentum can
be neglected. If one would like to consider the case of a deformed system, the stress tensor
and the conservation of angular momentum have to be modified, and equations (50) and (52)
should be extended to a more general forms containing the additional elastic stress. Elastic
stress induced by spatial inhomogeneities will be the subject of interest in section 6. The
status of the LE equation as a constitutive equation for nematics is therefore analogous to that
of the Newtonian constitutive equation as a description for ordinary liquid.

3.3. Microscopic stress tensor

In general, the transport coefficients can be obtained within the framework of classical
kinetic theory [2, 3]. In this context, the macroscopic stress tensor can be defined as an



R118 Topical Review

ensemble average of σm
ij , the corresponding microscopic stress tensor, over the non-equilibrium

distribution function w{xi}, where xi are the relevant phase-space variables. In fact the
microscopic stress tensor describes the evolution of the microscopic momentum density p(R)

according to the local conservation law:
dp(R)

dt
= ∇ · σm(R). (53)

The general expression for the microscopic stress tensor can be obtained with the help of
the microscopic equations of motion for individual molecules. For a nematic fluid composed
of rigid elongated particles, approximate expressions for the microscopic stress tensor had
been given in the literature [19, 22]. Here we outline a careful derivation of the microscopic
stress tensor for a general uniaxial molecule.

A molecule can be considered as a rigid body made up of bounded points of mass mk .
Then the total momentum in the system of many such particles is

p(R) =
∑

i

∑
k

mk [vi + (ωi × rik)] δ(R − ri − rik) (54)

where the index i indicates a molecule and k a point inside the molecule, see figure 3. Here
ωi is the angular velocity of rigid molecular rotation and vi the velocity of its centre of mass
(COM). ri is the position of the COM in the laboratory frame, while rik is the position of
the point k in the molecular frame so that the velocity of a point k of the ith molecule in the
laboratory frame is vik = vi + ωi × rik .

Formally expanding the delta-function in powers of rik , we have

δ(R − ri − rik) = δ(R − ri ) − rik · ∇Rδ(R − ri ) + f (∇2δ) + · · · . (55)

Taking the time derivative in equation (54) and substituting equation (55) into (53), while
working in the linear flow regime where higher order terms ∇2δ can be neglected, we find
that the microscopic stress tensor can be separated into the translational (a function of ri and
its derivatives) and orientational parts. Comparing these terms with the ∇ · σm(R) on the
right-hand side of definition (53) we obtain the orientational part of the microscopic stress
tensor:

σ or
αβ =

∑
i

∑
k

mk [ωi × (ωi × rik) + ω̇i × rik]α (rik)βδ(R − ri )

+
∑

i

∑
k

mk(ωi × rik)α(ωi × rik)βδ(R − ri ). (56)

The translational part of the microscopic stress would determine the isotropic viscosity, arising
from non-equilibrium pair correlations in liquid. Its contribution will remain in the nematic
phase as well, adding a significant constant to the Leslie coefficient α4, a fact often overlooked
in molecular theories of nematic viscosity.

Expanding the tensors in (56) and grouping together the expressions for the inertia tensor
of rigid body rotating about its COM, defined as

Iαβ =
∑

k

mk(r
2δαβ − rαrβ), (57)

we can rewrite the orientational part of microscopic stress tensor as a sum over all
molecules i:

σ or
αβ = −

∑
i

[Iαδ(I
−1)νl�

lεβνδ + Imkεαlmωlεβjkωj + Iανωβων − Iαβω2]δ(R − ri )

+
∑

i

εβνα(I−1)νl�
l

(
1

2
Tr(Iαβ)

)
δ(R − ri ). (58)
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Figure 3. The molecule i (arbitrarily represented here as an ellipsoid, without loss of generality) has
its centre-of-mass coordinate ri in the laboratory frame. In the frame of its COM, the position of a
given mass element mk is rik . The unit vector ui represents the principal axis of the tensor of inertia
moments of this molecule. For a uniaxial body, this tensor is equal to Iαβ = I⊥δαβ +(I‖−I⊥)uαuβ .

Here �i is the total moment of the force acting on the ith molecule, arising from the dynamical
relation �i = Iij ω̇j . The torque acting on the molecule i from all its neighbours is given by
the rotational gradient of the pair potential,

�α(ri) = −
∑

j

εαβγ ui
β

∂U(ui ,uj , rij )

∂ui
γ

, (59)

where U(ui ,uj , rij ) is the interaction potential for molecules i and j . Since all variables in
(59) are related to the particle i, summing over the rest of the particles gives, by definition, the
molecular field (often called the mean-field potential)

U(ui , ri ) =
∑

j

U(ui ,uj , rij ). (60)

Section 5.3 gives more detail to these concepts. For a rigid uniaxial molecule, we should
define the principal molecular frame in which the inertial tensor is diagonal with components
I⊥ and I‖ (see figure 3):

Iαβ = I⊥δαβ + (I‖ − I⊥)uαuβ. (61)

Substituting equations (59) and (61) into (58), we finally have

σ or
αβ =

∑
i

[(
1 − I‖

2I⊥

)
uα

∂U

∂uβ

− I‖
2I⊥

uβ

∂U

∂uα

+

(
I‖ − I⊥

I⊥

)
uαuβum

∂U

∂um

]
δ(R − ri )

−
∑

i

(I‖ − I⊥)[(ω × u)α(ω × u)β + uαuνωνωβ − ω2uαuβ]δ(R − ri ) (62)

Here the two groups of terms are deliberately assembled in the way to highlight the distinction
between the potential and the kinetic contributions to the microscopic stress tensor. For
an ellipsoid, with semi-axes a and width b (see figure 3) the moments of inertia along and
perpendicular to the director are I‖ = 2

5Mb2 and I⊥ = 1
5M(a2 + b2), with M the total mass

of the molecule. For a long thin ‘rod-like’ particle p = a/b � 1 and I‖ � I⊥; for an oblate
ellipsoid with b � a they are of the same order of magnitude. (Later in this text we shall be
dealing with thin flat discs, with thickness d and diameter D � d, which have I‖ = 1

8MD2

and I⊥ = 1
4M( 1

3d2 + 1
4D2), also of the same order of magnitude.) Substituting the I-values

for an ellipsoid into equation (62) gives the final form:

σ or
αβ =

∑
i

[
p2

p2 + 1
uα

∂U

∂uβ

− 1

(p2 + 1)
uβ

∂U

∂uα

− p2 − 1

p2 + 1
uαuβum

∂U

∂um

]
δ(R − ri )

+
∑

i

p2 − 1

p2 + 1
I⊥[(ω × u)α(ω × u)β + uαuνωνωβ − ω2uαuβ]δ(R − ri ) (63)

with the molecular aspect ratio p = a/b.
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The macroscopic continuum stress tensor is obtained by statistical averaging of (63) which
implies the integration over the angles (u) and angular velocity (ω) with a proper distribution
function. The averaging over the velocity can be easily performed since it is determined by
the one-particle local Maxwell distribution function = exp[−I⊥(ω −ωres)

2/2kT ], where ωres

is the background angular velocity due to flow. The second term on the right-hand side of
equation (63) therefore gives, after averaging, the ‘kinetic’ part of the stress tensor.

The stress tensor in terms of microscopic orientational variables, but not molecular
velocities (which have just been averaged out as fast variables), takes the form

σ or
αβ =

∑
i

{
3kT p̃

(
uαuβ − 1

3
δαβ

)
+

p2

p2 + 1
uα

∂U

∂uβ

− 1

p2 + 1
uβ

∂U

∂uα

− p2 − 1

p2 + 1
uαuβum

∂U

∂um

}
δ(R − ri ) (64)

where p̃ = (p2 − 1)(p2 + 1) is often called the form factor of the molecules. Note that the
assumption made about ellipsoidal shape of the anisotropic molecule, leading to the particular
expressions for I‖ and I⊥ and the resulting form of (64), was not necessary at all. The theory
of microscopic stress at the level of (62) or (58) is totally general for rigid uniaxial particles.

The separation of the orientational part of stress tensor into two parts, kinetic and potential,
has an important physical significance. The kinetic part, proportional to 3kT , represents the
momentum flux due to the translation of individual molecules, while the second, potential part,
represents the flux arising from intermolecular forces. Both are referred to a coordinate system
moving with the local fluid velocity v. In a dilute gas of molecules, the kinetic part gives the
dominant contribution [23], while in a dense fluid, the orientational motion is inhibited and
the potential part gives the dominant contribution. In the following sections, we will assume
that the system has uniform density and the summation over the delta-functions is replaced by
a constant number density ρ(R).

3.4. Preliminary discussion points

It is obvious that in the limit p → ∞, equation (64) reduces to the familiar results for long
rods system obtained previously [19, 22]. For the disc-like molecules the result is of special
interest. Since in this case the form factor p̃ is negative, one may expect a change in sign
of certain viscosity coefficients. One can speculate that more drastic differences in viscosity
coefficients will arise from consideration of more precise mean-field potential.

It is interesting to compare these expressions with classical results of Kuzuu and Doi [19].
In their approach, the elastic stress tensor is obtained by relating changes in free energy to the
elastic stress and virtual deformation [23]. They implicitly assumed that such free energy can
be defined even in non-equilibrium state since the system behaves as an elastic material for
instantaneous deformation. By making this approximation, they obtained the stress tensor:

σαβ = p̃
[
3ρkT

〈
uαuβ − 1

3δαβ

〉− ρ〈uα(u × ∂U)β〉] . (65)

This agrees with (64) in the kinetic part of the stress tensor, but not in the potential-dependent
part. In fact if one uses the free-energy approach, following Kuzuu and Doi, one finds that
the expression they had derived contains only the symmetric part of our complete microscopic
stress tensor. As a result, they had to introduce arbitrary magnetic field to generate asymmetric
torque contribution, which however exists in nematics even in the absence of magnetic
field. In this respect, our results give a more accurate description since equation (64) can
be antisymmetrized, without imposing external conditions to the system.
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A cautionary remark has to be made. We have assumed uniform liquid concentration
throughout the sample. In reality, a phase separation may occur between the isotropic
and nematic phases with different concentrations, as often is the case in lyotropic systems.
The kinetic equation will describe the internal dynamics in each of the phases, which is
thermodynamically stable. It is however not sufficient to describe the hydrodynamics of the
nematics near phase separation boundary. This fact must be borne in mind while comparing
the theory with experiments in the bi-phase region.

4. Microscopic viscosity coefficients

In this section, we put together results from sections 2 and 3 to derive a set of the microscopic
expressions for the Leslie coefficients. We also investigate the effects of nonlinear corrections
due to gyroscopic motions in discotic nematics. These effects give no corrections to the
Miesowicz viscosities but generate a nonlinear rotational viscosity γ ′ that depends on the
aspect ratio p and the longitudinal moment of inertia I‖.

The motivation for finding the microscopic expressions for the Leslie coefficients relies
on the concept that the macroscopic continuum stress tensor is a result of averaging its
microscopic equivalent σm over the appropriate non-equilibrium distribution function. The
underlying assumption is that the nematic liquid crystal performs rotational Brownian motion
in a mean-field potential and whose orientational distribution function satisfies the kinetic
equation (section 2). However, we note that the solution to the kinetic equation is non-trivial,
even if one neglects the nonlinear terms (though of course it can be done via eigenfunction
expansion method when the flow term is neglected). Instead, we demonstrate how, by following
the approach used by Doi and others [19, 22], one can separate the macroscopic stress tensor
into the symmetric and anti-symmetric parts, the microscopic viscosity coefficients can be
obtained in a more elegant fashion.

4.1. Symmetric stress tensor

From equation (49), the symmetric stress tensor of the LE phenomenological theory can be
written as

σ s
αβ = α1nαnβnρnµgs

µρ + α4g
s
αβ + 1

2 (α5 + α6)
(
nαnµgs

µβ + nβnµgs
µα

)
+ 1

2 (α2 + α3)(nαNβ + nβNα) (66)

where gs
αβ is the symmetric velocity gradient and N is the rate of angular rotation (46). Our aim

is to derive a microscopic expression of the Leslie’s viscosity coefficients from microscopic
variables through a series of coarse-graining. The symmetric stress tensor can be obtained by
averaging the microscopic stress tensor in equation (64) over the non-equilibrium distribution
function,

σ s
ij = ρ

〈
3kT p̃

(
uiuj − 1

3δij

)
+ 1

2 p̃(ui∂jU + uj∂iU − 2uiujum∂mU)
〉

(67)

where ρ is the number density of the nematic liquid crystal. 〈· · ·〉 denotes the average over
the non-equilibrium single-particle orientation distribution function 〈· · ·〉 = ∫

w(u, t) · · · du.
Obviously, averaging with weq(u) alone will return zero.

We next use a trick, in this context often attributed to Doi [19]. We consider the kinetic
equation, obtained in section 2 and neglect higher order nonlinear terms,

ẇ + α∂k(
kw) = α2∂k

(
∂kw +

∂kU

kT
w

)
. (68)



R122 Topical Review

Multiplying this equation by a factor
(
uiuj − 1

3δij

)
and integrating over the director orientation

making use of the orientational version of integration by parts:
∫

duA(u)∂B(u) =
− ∫

du [∂A(u)] B(u), we derive the following expressions for the four terms in (68):∫
ẇ

(
uiuj − 1

3
δij

)
du = ∂

∂t

〈
uiuj − 1

3
δij

〉
(69)

∫
∂k(
kw)

(
uiuj − 1

3
δij

)
du = −1

2

[
ga

iα〈uαuj 〉 − ga
αj 〈uαui〉

]
+

p̃

2

[
2gs

αβ〈uαuβuiuj 〉 − gs
γ i〈uγ uj 〉 − gs

γj 〈uγ ui〉
]

(70)∫
∂k(∂kw)

(
uiuj − 1

3
δij

)
du = −6

〈
uiuj − 1

3
δij

〉
(71)

∫
∂k

(w∂kU)

kT

(
uiuj − 1

3
δij

)
du = − 1

kT
〈ui∂jU + uj∂iU − 2uiujum∂mU 〉. (72)

Combining these results, equation (68) after averaging gives
∂Qij

∂t
= Fij + Gij (73)

where

Qij =
〈
uiuj − 1

3
δij

〉
(74)

Fij = −6α2

〈
uiuj − 1

3
δij

〉
− α2

kT
〈ui∂jU + uj∂iU − 2uiujum∂mU 〉 (75)

Gij = −1

2
αp̃

[
2gs

αβ〈uαuβuiuj 〉 − gs
γ i〈uγ uj 〉 − 〈uγ ui〉gs

γj

]
+

α

2

[
ga

iα〈uαuj 〉 − 〈uαui〉ga
αj

]
.

(76)

Following this, the symmetric part of the macroscopic stress tensor can be written as

σ s
ij = ρ

〈
3kT p̃

(
uiuj − 1

3
δij

)
+

p̃

2

(
ui

∂U

∂uj

+ uj

∂U

∂ui

− 2uiujum

∂U

∂um

)〉

≡ −ρ
kT

2α2
p̃Fij = −ρ

kT

2α2
p̃

[
∂Qij

∂t
− Gij

]

= ρ
kT p̃2

4α

[−2gs
αβ〈uαuβuiuj 〉 + 〈uγ uj 〉gs

γ i + 〈uγ ui〉gs
γj

]
+ ρ

kT p̃

4α

[〈uαuj 〉ga
iα − 〈uαui〉ga

αj

]− ρ
kT p̃

2α2

∂

∂t
〈uiuj 〉. (77)

The various moments of orientational distribution function can be expressed generally in
terms of the macroscopic average director field n and the delta-functions which must obey the
directors symmetries that n and −n are equivalent. The derivation of the various moments is
straightforward and we simply quote the results:

〈uiuj 〉 = S2ninj + 1
3 (1 − S2)δij (78)

〈uαuβuiuj 〉 = S4nαnβninj + 1
15

(
1 − 10

7 S2 + 3
7S4

)
(δαβδij + δαiδβj + δαj δβi) + 1

7 (S2 − S4)

× (nαnβδij + ninj δαβ + ninαδjβ + ninβδαj + njnαδβi + njnβδiα) (79)
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where S2 and S4 are the scalar order parameters corresponding to the averaged second and
fourth Legendre’s polynomials of molecular orientation. The main scalar order parameter can
be derived from the order parameter tensor Sij :

Sij = 〈
uiuj − 1

3δij

〉 = S2
(
ninj − 1

3δij

)
. (80)

Multiplying ninj to equation (80) gives S2 = 3
2

〈
(n ·u)2 − 1

3

〉
. Thus S2 is a scalar measure

of how perfectly the molecules are oriented along n. The expression for S4 is derived in the
same way.

Substituting the average moments we eventually obtain the desired expression of σ s
ij in

terms of velocity gradient and the directors,

σ s
ij = kT p̃2

4α
ρ

[
−2S4nαnβninjg

s
αβ +

2

35
(7 − 5S2 − 2S4)g

s
ij

+
1

7
(3S2 + 4S4)

(
ninαgs

αj + njnβgs
βj

)− 2

7
(S2 − S4)nαnβgs

αβδij

]

− kT p̃S2

4α
ρ

[
ni

(
ṅj

α
− ga

jαnα

)
+ nj

(
ṅi

α
− ga

iαnα

)]
. (81)

The term nαnβgs
αβδij contributes to the scalar pressure, which therefore does not appear in the

LE stress tensor. Comparing with equation (66), we find the corresponding Leslie viscosity
coefficient combinations, after restoring to dimensional forms:

α1 = −ρλ⊥p̃2S4 (82)

α2 + α3 = −ρλ⊥p̃S2 (83)

α4 = ρλ⊥
35

p̃2(7 − 5S2 − 2S4) (84)

α5 + α6 = ρλ⊥
7

p̃2(3S2 + 4S4). (85)

This gives four out of five required relations; the main rotational viscosity coefficient
γ1 = α2 − α3 has to be determined from the antisymmetric analysis of torques.

4.2. Anti-symmetric stress tensor

For an isotropic liquid, the stress tensor must be a symmetric function due to the demand on the
local balance of torques. For anisotropic nematics, we expect the anisotropic part of the stress
tensor to be non-vanishing due to the orientational torques of the director. The existence of a
viscous stress in the fluid has to be a result of averaging over the non-equilibrium distribution
function. We can write the non-equilibrium distribution function as w = w0(1 + h[u]) where
h represents the deviation from the equilibrium distribution function w0 (or weq) which in turn
can be written in a very general form that reflects the symmetries of the terms in LE theory.
The macroscopic antisymmetric stress tensor then takes the form

σa
αβ = ρ

2

∫ (
uα

∂U

∂uβ

− uβ

∂U

∂uα

)
w0[u]h[u] du (86)

where the antisymmetric microscopic stress tensor follows from taking the antisymmetric part
of (64). The antisymmetric stress tensor obtained this way has to be equivalent to that obtained
in the phenomenological LE formalism.

In this case, there is no straightforward trick to solve σa
αβ , as was previously done for

σ s
αβ . Instead we have to solve the kinetic equation (68) to determine h[u] uniquely. The
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phenomenological antisymmetric stress tensor is given by equation (50), which suggests that
γ1 is related to the rotation of the director ṅ and the flow vorticity (∇ × v). Therefore we
have the freedom to choose the nematic system in zero flow (Ω = 0) such that the solution of
the kinetic equation gives h which is flow-independent and can be equated to the γ1 term. The
kinetic equation becomes

ẇ = α2∂β

[
∂βw +

∂βU

kT
w

]
= α2w0

[
∂2h − ∂βU

kT
∂βh

]
. (87)

Assuming the mean-field potential to be of the Maier–Saupe form [43]

U(θ) = −JS2

[
3

2
(n · u)2 − 1

2

]
, (88)

and the equilibrium orientational distribution w0 ∝ exp[−U/kT ], the equation (87) becomes

∂2h − ∂βU

kT
∂βh 
 3JoS2

α2kT
(n ·u)(ṅ ·u)(1 + h). (89)

As designed, the only source of deviation from equilibrium here is the time dependence of
the uniformly rotating director. We have assumed that the term n · u̇ is negligibly small for
a nematic system approaching quasi-static state such that all molecules are almost aligned
parallel to the averaged director n. An equivalent argument is that n · u̇ is proportional to the
angular velocity which is a fast dynamical variable that had been previously integrated out to
yield the kinetic equation (68) in terms of w(u, t).

Symmetry of the problem suggests the following expression for the linear non-equilibrium
correction h,

h = ho(n ·u)(ṅ ·u) (90)

where ho is a constant to be determined self-consistently. In this respect, we can neglect h on
the right-hand side of equation (89) since it produces nonlinear terms. Substituting (90) into
equation (89) determines ho (in its dimensional form):

ho = − λ⊥
kT

JS2/kT

2 + JS2/kT
(91)

where the ratio q = JS2/kT denotes the strength of the nematic order and λ⊥ is the rotational
friction constant. Substituting this result into equation (86) and manipulating in spherical
coordinates, we finally obtain the averaged antisymmetric stress tensor with the explicit
coefficient in front

σa
αβ = 1

70

(JS2/kT )2

2 + JS2/kT
λ⊥ρ(7 + 5S2 − 12S4)(nαṅβ − ṅαnβ). (92)

Comparing with the continuum theory definition in equation (49) we identify that

γ1 = α3 − α2 = 1

35

(JS2/kT )2

2 + (JS2/kT )
λ⊥ρ(7 + 5S2 − 12S4), (93)

which has the required property of vanishing when S2 goes to zero. Making use of
equations (82)–(85), we have the following microscopic expressions for the remaining Leslie
coefficients:

α2 = −1

2
(ρλ⊥p̃S2 + γ1) (94)

α3 = −1

2
(ρλ⊥p̃S2 − γ1) (95)
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α5 = 1

2
ρλ⊥p̃

[
S2 +

p̃

7
(3S2 + 4S4)

]
(96)

α6 = 1

2
ρλ⊥p̃

[
−S2 +

p̃

7
(3S2 + 4S4)

]
. (97)

The above analysis leads to the following theoretical predictions.

(1) The microscopic expressions for the viscosity coefficients depend strongly on the order
parameters and on the alignment of the director in the fluid. They also depend
explicitly on the geometrical shape of the spheroid which manifest itself in the form
factor p̃. Since the order parameters are the averaged property, the Leslie coefficients
do not depend explicitly on the exact form of the nematic potential U. Instead, the
intermolecular potential determines uniquely the rotational friction constant λ⊥ (see
section 5).

(2) In the above analysis, we have paid particular attention to the fact that the general
symmetric part of the microscopic stress tensor for a spheroid must be enriched with the
form factor p2−1

p2+1 , in contrast to previous works which treated only long-rods nematics
[19, 22]. This allows us to take p to be asymptotically zero for the case of a discotic
nematic, in which case the form factor p̃ goes to −1. This implies a change in the signs
of certain viscosity coefficients, like α5 and α6. In the limit of small γ1, both α2 and α3

are large and positive for a discotic nematic, but are negative for rod-like nematics. This
is in accordance with earlier theoretical predictions [8, 11].

(3) The geometrical shape appears to have no effects on the value of α4. In the LE formalism,
this term accounts for the Newtonian behaviour which is present in isotropic liquid
too. It accounts phenomenologically for contributions to momentum transport other
than those due to rotational motions. For spherically symmetric molecules, this will
be the sole contribution towards the viscosity of the liquid, mostly determined by the
translational molecular degrees of freedom, which we have not considered here at all.
In the nematic case, according to equation (85), the orientational part of α4 vanishes
in the limit of strong order when S2 and S4 tend to be 1. This corresponds to the
fact that as the liquid approaches its full nematic alignment, its isotropic counterpart,
independent of the shape of the anisotropic molecules, ceases to exist and so is α4.
This suggests that α4 consists of two independent contributions: the isotropic αiso

4
which denotes contributions from momentum transport, in the style of classical works
of Kirkwood and others [1–3], and the additional contribution αnem

4 , which we derived
above.

(4) From equation (93), we see that as the intermolecular coupling strength q increases,
the rotational viscosity γ1 increases significantly, leading to large energy dissipation for
uniform director rotation with respect to the matrix. This suggests that γ1 characterizes
director rotation that is associated with overcoming the potential barrier which is dictated
by the order parameter S2. A strong nematic potential therefore increases the viscous
loss.

(5) There is an alternative approach towards evaluating the antisymmetric stress tensor, by
taking the steady-state solution ẇ = 0 in the kinetic equation, instead of the zero flow
condition Ω = 0 as we have done. In this case, we are looking for the flow-dependent
terms of σa

αβ which will eventually give us values of γ1 and γ2 [22, 49]. This method
bypasses some of the approximations in the calculation above, but gives similar expression
of γ1. We do not include such an alternative derivation here.
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4.3. Reactive coefficient and director tumbling

We next discuss how an understanding of γ1 and γ2 leads to a description of non-trivial
dynamics such as director tumbling. The ratio of the negative of the irrotational torque
coefficient γ2 over the rotational viscosity γ1 is often known as the reactive coefficient or
tumbling parameter [43]. Here ‘reactive’ means that the term is reversible, i.e. no sign
changes in time-reversal and non-dissipative hence producing no dissipation either going
forwards or backwards in time. This parameter represents the competing effects of strain to
vorticity torques acting on the director n. Our results from previous section give for this
parameter, which is defined as the negative ratio of the two rotational viscosities:

−γ2

γ1
= 1 + α3/α2

1 − α3/α2
= p̃

35S2

7 + 5S2 − 12S4

2 + JS2/kT

(JS2/kT )2
. (98)

The form factor p̃ contributes to a sign inversion for γ2/γ1 between discotic and rod-like
nematics. For long rods, p̃ goes to 1, α3/α2 < 1 and −γ2/γ1 > 1. For disc-like molecules,
p̃ goes to −1, α3/α2 > 1, and −γ2/γ1 < −1. This conclusion agrees well with the analytic
solutions obtained via Poisson bracket formalism of Volovik [8].

In a more quantitative manner, we can consider the time evolution of n. This can be
obtained from the conservation of angular momentum in the LE theory [13, 50]:

∂ni

∂t
= (ν × n)i − γ2

γ1
[(gs · n)i − (n · gs · n)ni] (99)

where as before, gs is the symmetric velocity gradient, ν is the vorticity defined in
equation (46) and the reactive coefficient is a factor in the second term. From (99) it is
apparent that for |γ2/γ1| > 1, the straining motion dominates and the director tends towards a
steady-state orientation angle θ relative to the stream lines, when the hydrodynamic torque Γ
vanishes [6, 11]:

tan θ =
√

γ2 + γ1

γ2 − γ1
=
√

α3

α2
. (100)

θ is called the flow alignment angle, defined as the angle between the director axis and the
flow in the state of balanced nematic and viscous torques. We see that the straining term
can be interpreted as the ρλ⊥S2 term which is dictated by the rotational friction and the
order parameter strength, while γ1 dictates the vorticity effects. Steady-state alignments occur
when shearing rotates the molecules until they are almost parallel or perpendicular to the flow
direction and at this orientation they cease to rotate. As we had seen, for rod-like nematic,
α3/α2 < 1, equation (100) states that θ < 45o. In fact the rods align their axes almost
parallel to the flow direction. For the discotic nematic, we have the opposite situation when
α3/α2 � 1, and θ ≈ 90◦. The discs therefore tend to align with their axes perpendicular to
the flow direction, with one of the long axes of the discs being parallel to the flow direction.
The other long axis seems to point in the gradient direction, so that the director orients in the
vorticity direction. Such behaviour has indeed been observed in scattering studies [24], and
agrees with earlier predictions [11].

Equation (99) also suggests that when |γ2/γ1| < 1, the vorticity term dominates over
the straining motion and the director can no longer find a steady-state orientation. This is
reflected in γ1 � ρλ⊥S2 and α3/α2 < 0. As a result no alignment angle can be established.
In this situation, the molecules deviate significantly from the average orientation, and even if
the director is almost aligned with the flow field, there is a net torque on molecules that are
not perfectly aligned with the field. Due to the anisotropic shape and the pair potential, the
torque on any one molecule is transmitted to the others and the whole assembly of molecules
continues rotating even at the instant the average direction is parallel to the flow. The nematics



Topical Review R127

therefore do not have a preferred alignment angle, and at any orientation angle, the director
experiences a viscous torque tending to rotate it. This leads to the tumbling phenomenon.
The steady shear-flow properties of tumbling nematics are very different from those of flow-
aligning nematics [51, 52], and the effects of tumbling and its arrest are believed to lead to
observed transitions of normal stress differences from positive to negative values [50].

In this section, we discussed several predictions of the LE theory pertaining to the tumbling
of the director. However we note that these results do not immediately apply to real nematic
liquids, confined within vessels when strong anchoring at the wall produces gradients in
the director field. These gradients or distortions in the director field lead to elastic stresses
known as Ericksen stresses. In passing, we also note that both the flow-aligning and tumbling
nematics are seen to produce large number of disclination lines under high rates of shear [53],
and this observation can only be reconciled with the existence of elastic stress in the nematic
medium. We will postpone this discussion to section 6, when a spatially-varying director field
in the presence of flow will be considered.

4.4. Nonlinear effects

We return to the investigation of the nonlinear effects that are present in the kinetic equation.
As was briefly mentioned in section 2, the nonlinear effects were manifested in the following
additional terms in the kinetic (Smoluchowski) equation (26). Their effects can be analysed
by considering their corrections to the symmetric and antisymmetric parts of the stress tensor
separately.

4.4.1. Corrections to symmetric stress tensor. We first consider the effects of the gyroscopic
term 1

2α2A∂β[(u · ∇ ×v)(Ω×u)βw] on the symmetric stress tensor. Using the same method
of averaging as outlined in section 4.1, we obtain∫

∂β

[
(u · ∇ × v)(Ω × u)βw

] (
uiuj − 1

3
δij

)
du

= −
∫

∂β

(
uiuj − 1

3
δij

)
(u · ∇ × v)(Ω × u)βw du. (101)

Expanding Ω = 1
2 p̃(u × gs · u) + 1

2 (u × ga · u), the integral (101) can be evaluated to give
the correction that is added to the symmetric stress tensor in the original equation (73):

σ s
ij = − kT

2α2
p̃

[
∂Qij

∂t
− Gij − Mij

]
(102)

where Qij and Gij were given by (73)–(76), and we also have the nonlinear addition
σ NL

ij = − kT
2α2 p̃Mij . The next step involves expanding all moments of u. The tensor Mij ,

after manipulations, takes the form

Mij = α2 A

2

[−p̃εαβγ gs
γ l(∇ × v)p〈uαuβuluiujup〉]

+ α2 A

2

{
1

2
p̃S4(n · ∇ × v)

[
ni(n × gs · n)j + nj (n × gs · n)i

]
+

1

2
p̃A′(ga

imgs
mj − gs

imga
mj

)
+

1

2
p̃B

[
(∇ × v)i(n × gs · n)j + ni(n × gs(∇ × v))j

+ ni((∇ × v) × gs · n)j + (n · ∇ × v)gs
minlεjlm + (i ↔ j terms)

]
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+
1

2
S4(n · ∇ × v)[ni(n × ga · n)j + nj (n × ga · n)i]

+ A′ [2(∇ × v)i(∇ × v)j + ga
imga

mj

]
+

1

2
B
[
2(n · ∇ × v)ni(∇ × v)j + (∇ × v)i(n × ga · n)j

+ ni

(
n × ga · (∇ × v)

)
j

+ ni

(
(∇ × v) × ga · n

)
j

+ (n · ∇ × v)ga
minlεjlm + (i ↔ j terms)

] }
. (103)

Equation (103) shows that all terms are indeed second order in velocity gradient, with their
coefficients expressed by the appropriate order parameters and obeying certain symmetry
patterns. At this stage, we are motivated by the fact that experimentally it is not easy to
measure all of the Leslie’s coefficients. What is often measured is the Miesovicz viscosity
defined in the beginning of section 3:

ηa = 1
2α4, ηb = 1

2 (α3 + α4 + α6), ηc = 1
2 (−α2 + α4 + α5). (104)

When each flow configuration is considered, we discover that all terms in equation (103)
vanish in one way or another. It seems to suggest that the effects of nonlinear corrections
only manifest themselves in some non-trivial flow configurations which involve the director
and flow couplings. On the other hand, some insights can be gained from consideration of the
effects of nonlinearity on the antisymmetric stress tensor.

4.4.2. Corrections to antisymmetric stress tensor. The nonlinear corrections pertaining to the
gyroscopic effects manifest itself strongly in the antisymmetric stress tensor, since it relates to
the energy or entropy dissipation via rotation of the director axis in shear flow. The gyroscopic
term changes the ‘shape’ of the distribution function which corresponds to energy loss via
torques.

In steady state, the kinetic equation (26) becomes

α∂β(
βw) = α2∂β

(
∂βw − �β

kT
w

)
+ α2∂β(
α∂α
βw)

+
A

2
α2∂β[(u · ∇ × v)(Ω × u)βw] + α∂β(
α∂α
βw) (105)

and we write the non-equilibrium distribution function with corrections:

w = w0(1 + h(1)[u] + h(2)[u]) (106)

where h(1) is the correction to the equilibrium distribution function w0 that we had discussed
before which is proportional to linear velocity gradient. h(2)[u] is introduced to represent
corrections that are second order in velocity gradients, and is relevant in this section since
we are primarily interested in seeking nonlinear corrections to the antisymmetric stress tensor
due to the gyroscopic term α2 A

2 ∂β[(u · ∇ × v)(Ω × u)βw]. As such we can, for the moment,
neglect the term α∂β(
α∂α
βw), and consider only the reduced equation:

α

(
∂2h(2) − ∂βU

kT
∂βh(2)

)
− h(1)∂k
k +

∂kU

kT

kh

(1) − 
k∂kh
(1)

= α
A

2
∂β[(u · ∇ × v)(Ω × u)βw] (107)

which we obtain after substituting (106) into (105). We have deliberately left the gyroscopic
term on the right-hand side. The various terms can be evaluated explicitly in spherical
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coordinates, u = n cos θ + e sin θ . The right-hand side of equation (107) yields

A

2
∂β[(u · ∇ × v)(Ω × u)βw]

= A

2

{
1

2
p̃

[
(u · ∇ × v)(n × e) · gs · u

1

kT

∂U

∂θ
− (ga · u)(gs · u)

]

+
1

2

[
(u · ∇ × v)(n × e) · ga · u

1

kT

∂U

∂θ
− (ga · u)2

]
− (u · ∇ × v)2

}
.

(108)

We seek the appropriate general expression of h(2) that corresponds to equation (108).
The corrections due to h(1) becomes irrelevant since no matching of the velocity gradient terms
can be found. An appropriate expression for h(2) will be h(2) = h1 + h2 + h3 where

h1 = hp1g
s
αβga

ij εγ ij (n × e)α nγ nβ + hp2g
s
αβga

ij εγ ij (n × e)α nγ eβ

+ hp3g
s
αβga

ij εγ ij (n × e)αeγ eβ + hp4g
s
αβga

ij εγ ij (n × e)α eγ nβ

+ hp5g
s
mαga

mβnαnβ + hp6g
s
mαga

mβeαeβ + hp7g
s
mαga

mβnαeβ

+ hp8g
s
mαga

mβeαnβ (109)

where the correction coefficients must depend on the two angles h = h(θ, φ).
The term h2 has exactly the same general expansions as h1 above, except for every

symmetric velocity gradient gs
αβ in these equations, we replace it by ga

αβ . Finally we have
for h3:

h3 = haεαjkεβmng
a
jkg

a
mnnαnβ + hbεαjkεβmng

a
jkg

a
mneαeβ

+ hcεαjkεβmng
a
jkg

a
mnnαeβ + hdεαjkεβmng

a
jkg

a
mneαnβ. (110)

The left-hand side of equation (107) can be evaluated explicitly in spherical polar
coordinates to give

∂2h(2)

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂h(2)

∂θ
+

1

sin2 θ

∂2h(2)

∂φ2
. (111)

Substituting h1, h2 and h3 into equation (111), and after a series of tedious algebra, we arrive
at a form where explicit comparison on both sides can be made. For coefficients corresponding
to h1, we obtain the following relations:

∂2hp1

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hp1

∂θ
− hp1

sin2 θ
= A

8
p̃ cos2 θ

1

kT

∂U

∂θ
(112)

∂2hp2

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hp2

∂θ
− 2hp2

sin2 θ
= A

8
p̃ cos θ sin θ

1

kT

∂U

∂θ
(113)

∂2hp3

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hp3

∂θ
− 3hp3

sin2 θ
= A

8
p̃ sin2 θ

1

kT

∂U

∂θ
(114)

∂2hp5

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hp5

∂θ
− 2hp6

sin2 θ
= −A

4
p̃ cos2 θ (115)

∂2hp6

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hp6

∂θ
− 4hp6

sin2 θ
= −A

4
p̃ sin2 θ (116)

∂2hp7

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hp7

∂θ
− hp7

sin2 θ
= −A

4
p̃ cos θ sin θ. (117)
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For coefficients corresponding to h2, we arrive at the same equations as h1 but without the
form factor p̃. For coefficients corresponding to h3,

∂2ha

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂ha

∂θ
= −A

8
cos2 θ (118)

∂2hb

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hb

∂θ
− 2

hb

sin2 θ
= −A

8
sin2 θ (119)

∂2hc

∂θ2
+

(
cot θ − 1

kT

∂U

∂θ

)
∂hc

∂θ
− hc

sin2 θ
= −A

8
sin θ cos θ (120)

and hd = hc, hp4 = hp2, hp8 = hp7.
We wish to obtain some qualitative features of the modified stress tensor due to the

nonlinear gyroscopic term; therefore, we make the following approximations.
(1) We use the one-constant approximation, that is, we assume that all the h for a given

combination of velocity gradients are equal, hp1 = hp2 = hp3 = hp4, hp5 = hp6 = hp7 =
hp8, and ha = hb = hc = hd = h′

3, so that

h(2) = hp1g
s
αβga

ij εγ ij (n × e)α[nγ nβ + nγ eβ + eγ eβ + eγ nβ]

+ hp5g
s
mαga

mβ[nαnβ + eαeβ + nαeβ + eαnβ]

+ ha1g
a
αβga

ij εγ ij (n × e)α[nγ nβ + nγ eβ + eγ eβ + eγ nβ]

+ ha5g
a
mαga

mβ[nαnβ + eαeβ + nαeβ + eαnβ]

+ h′
3εαjkεβmng

a
jkg

a
mn[nαnβ + eαeβ + nαeβ + eαnβ] (121)

where ha1 and ha5 are terms due to h2.
(2) We assume that in all cases, the term hp/ sin2 θ will be negligible if the relaxation time

of the molecular rotation about the director n is much smaller than the time of reorientation
with respect to the angle θ . In this way, the microscopic antisymmetric stress tensor due to
gyroscopic effects can be calculated using the formula

σa
αβ =

∫
wσ micro

αβ du =
∫

w0hσ micro
αβ du. (122)

Substituting equation (121) and carry out the calculation explicitly, we eventually arrive at
(after restoring dimensional variables):

σa
αβ =

∫ (
− ρλ⊥(n · ∇ × v)[nα(n × gs · n)β − nβ(n × gs · n)α] · hp1

− ρλ⊥
2

{
nα[ga · gs · n]β + nα[gs · gs · n]β + nβ[ga · gs · n]α + nβ[gs · gs · n]α

}
· hp5

+ 4ρλ⊥(n · ∇ × v)[nα(∇ × v)β − nβ(∇ × v)α] · h′
3

)
∂U

∂θ
w0 sin θ dθ. (123)

The coefficients hp1, hp5 and h′
3 are derived to take the values:

hp1 ∼ A

8
p̃

π

q
eq, hp5 ∼ −A

4
p̃q−3/2 eq, h2 ∼ −A

8
q−3/2 eq . (124)

It can be seen that all terms without the potential derivatives on the right-hand side,
i.e. equations (115)–(120), retain the same functional dependence of q. The exponential
dependence on q, however, exists for all coefficients of h. The nonlinear rotational viscosity
γ ′

p1 due to hp1 is found to be

γ ′
p1 =

∫
hp1

∂U

∂θ
w0 sin θ dθ 
 1

16
ρλ⊥ e2qq− 1

2 Ap̃ (125)

which only appears in discotic nematics with non-vanishing A = √
I‖/I⊥.
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4.5. Preliminary discussion points

Despite the crude assumptions made in the previous section, we managed to obtain some
qualitative features of the solutions for kinetic coefficients and constitutive relations.

Equation (123) suggests that at a higher flow rate, there is strong coupling of the director
with the flow vorticity. Such effects become irrelevant for a rod-like nematic when A is very
small. On the other hand due to the non-vanishing I‖ and hence the additional gyroscopic
effects in disc-like molecules, there is a nonlinear correction to the antisymmetric stress tensor
and the rotational viscosity γ1.

The more general approach to find the complete solution to the nonlinear viscosity is to
write down the full general expression for h which satisfies all symmetries of the problem, and
explicit matchings of the coefficients can be made and determined. This process is however
very laborious which does not necessarily yield new physical insights to the solution. Instead
we had adopted a more pragmatic approach by focusing on only a subgroup of the complete
expression (see equation (121)) using the one-constant approximation.

The conventional intuitive picture to explain the nonlinear effects in viscosity is to visualize
flow alignment of the molecules along the flow. This microscopic rearrangement of the
molecules that results in a decrease of viscosity at higher velocity gradient is commonly
known as shear-thinning mechanism. Most suspensions of non-spherical particles which are
dilute enough tend to be shear-thinning at modest rates of shear. No doubt flow alignment
is always partly responsible but there is an additional factor due to rotation of suspended
particles by planar shear to adopt a layered arrangement which favours easy shear. In some
cases, at even higher rates of shear, the layers may break up due to shear-thickening, when
the particles form a less regular structure such that they occupy a larger volume and the bulk
structure becomes stiffer. The removal of misaligned domains therefore results in a drop
in the viscosity. Strain rate then speeds up and eventually a steady state is achieved at an
alignment angle (monodomain). However above a critical shear rate there is no solution
for the steady-state angle of alignment and this results in instabilities such as the tumbling
phenomena discussed before.

As was briefly mentioned above, we can derive γ1 in the linear regime (due to h(1)

correction) using the method described in this section. This method predicts an exponential
dependence on q, where q represents mean-field coupling strength which is proportional to
the order parameter S2. The apparent contradiction with the result of (93) can be resolved if
one expands the denominator in the limit of small q.

5. Rotational friction constant

In this section, the rotational friction constant λ⊥ is discussed in greater detail. We show
how it can be derived from microscopic interactions for a discotic nematic liquid crystal. The
expression for this constant suggests an Arrhenius exponential dependence on the isotropic
part of the intermolecular potential.

5.1. Generalized fluctuation–dissipation theorem

So far we have studied Brownian motion as a physical realization of a random process.
For our model of a molecule in rotational motion, the nature of the medium entered our
consideration only through one parameter, the friction constant. We know, however, that
that the medium comprises other molecules that are ultimately subjected to deterministic,
not statistical evolution. Therefore we ought to be able to derive the friction constant from
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basic atomic dynamics. The appropriate formalism requires us to work within the framework
of generalized fluctuation–dissipation theorem. To begin with, we consider the generalized
Langevin equation, also known as the Mori equation [36] that relates the friction coefficient
to a memory function K(t) (in the absence of external forces),

dA

dt
=
∫ t

o

K(s)A(t − s) ds + F (t) (126)

where A(t) is the dynamical variable of the problem, and F (t) is the stochastic source. The
memory function K(t) is related to the correlation function of the stochastic force:

K(t) = 〈F (t)F (0)〉
MkT

(127)

where M is the mass of the Brownian particle.
Equation (126) is useful when there is a good separation of time-scales for the motions of

the components of the system. We note that compared to the Langevin equation, the friction
constant λ has become a friction kernel, K(t), which if decays to zero sufficiently rapidly,
leads to ∫ t

o

K(s)A(t − s) ds ≈ A(t)

∫ t

0
K(s) ds ≈ A(t)

∫ ∞

0
K(s) ds. (128)

Thus the friction term in the Mori equation can be approximated by the friction term in the
Langevin equation, provided that the correlation time of the random force is short compared
to the time in which A(t) changes appreciably. We thus have a molecular expression for
the friction constant λ, which is the time integral of the autocorrelation function of the
intermolecular force exerted by the bath particles on the Brownian particle:

λ = 1

MkT

∫ ∞

0
〈F (t)F (0)〉 dt. (129)

Here the random force is interpreted as the intermolecular force on the Brownian particle
exerted by the bath particles when they move in the field of the fixed Brownian particle (note
that there is nothing intrinsically random in the random force). Equation (127) states that, if
we consider the Langevin’s limit, when the correlation time of the stochastic force is so short
as to approximate it as a δ-function,

〈F (t)F (0)〉 = δ(t) (130)

where  is the stochastic strength. Substituting it to the Mori equation, we recover the
fluctuation–dissipation theorem  = λMkT (the parameter M can be rescaled to 1 depending
on the definition of friction constant).

In the context of rotational motion, the friction constant arises as a consequence of the
Brownian particle experiencing a field of random external torques. These instantaneous
torques arise from fluctuations in the random intermolecular forces surrounding the particle.
As a result, the particle executes random rotational motion with arbitrary angular velocity at
any time-step. We can write down a similar form for the rotational friction constant λ⊥:

λ⊥ ≈ 1

kT

∫ ∞

0
〈ξ(t)ξ(0)〉 dt (131)

where ξ(t) is the stochastic torque at time t.
For a dense system like a nematic liquid, we have to consider two distinct types of

averaging processes in equation (131). The first type concerns ensemble-averaging which is
performed with respect to particle distribution and takes into account short-range correlation
effects etc. The second type is the time-averaging, where temporal correlations of the stochastic
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torques are considered. In this section, we will consider these two processes separately to
arrive at a microscopic expression for λ⊥.

The above analysis assumes that the decay rate of the torque correlation function is rapid
with respect to the rate of change of the distribution function of the Brownian particle (see
equation (128)). It can be shown that the correlation time for the stochastic torques is the
effective collision time tc which is of the same order of magnitude as the relaxation time for
the angular velocity. This however is true only in the stretched limit of the Brownian particle
being truly small (e.g. molecular liquids). For massive molecules, one expects the correlation
time to be much longer than the collision time (often neglected in this case) and the correlation
time is equated to the Brownian motion time tw. Strictly speaking that this only holds true
when tc � t � tw. There is an observation of long time-tail in molecular correlation functions
[36, 54] i.e. decay of certain molecular correlation function has an asymptotic slow inverse
power law; not the rapid exponential decay that had been assumed. Hence the assumption
that K has a short lifetime relative to A may not strictly be true. This can be explained
via the existence of slow fluid variables, and the general theoretical framework is known as
mode–mode coupling theory. We shall, however, not deal with this aspect since it is beyond
the scope of this review.

An example is that of a dilute gas as first suggested by Kirkwood [1]. Here two widely
different time-scales are easily identified as the duration of a collision and the mean free flight
time. The collision time may be interpreted as the time in which the motion of a molecule
is predictable from a knowledge of its initial momentum and the force on it at the initial
instant. For times longer than this collision time, a second collision may occur, completely
uncorrelated with the first. The mean-free time describes this regime well and it may be
interpreted as the decay time of the particle’s momentum correlation function.

5.2. Time averaging

As mentioned before, the temporal averaging of the stochastic torques 〈ξ(t)ξ(0)〉 corresponds
to finding the autocorrelation function of the angular velocity [1]. Such correlation function
typically follows an exponentially decaying function, where the decay time is often called the
Brownian motion time since it is the time above which the motion becomes diffusive, and
below which the motion is ballistic. By finding this correlation time for the particle’s angular
momentum, one effectively finds the correlation time for the stochastic torques. However,
for a nematic executing rotational motion, the situation is complicated by the presence of
multiple-correlation times due to its non-trivial tensorial formalism and the anisotropy of
the molecules. This contrasts with a typical isotropic liquid where the molecular relaxation
process can usually be described in terms of a single correlation time τc.

Some insights on the Brownian motion time can be drawn from the translational motion
of a Brownian particle of mass M, such as in the case of a colloid particle. In this case we
consider the dynamical variable velocity v(t), whose correlation function obeys

〈v(t)v(t ′)〉 = kT

M
e−|t−t ′ |/τ , (132)

where τ = M/λt is the Brownian motion time, or the velocity correlation time. λt denotes the
translational friction constant. Analogously, we can define a similar correlation time τω for
the angular velocity ω for rotational motion. For t < τω, the rotational motion is ‘ballistic’
in the sense that the angular velocity is maintained without ‘collisions’, which come in
the form of contacts with random external torques acting on the system. For t > τw, the
rotational motion becomes diffusive and the particle distribution function eventually reaches
the equilibrium Maxwell velocity distribution e−Iω2/2kT , hence the name rotational Brownian
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motion time [36]. For a simple spherical molecule, the dynamics can be described with a
single Brownian motion time τr = I/λr , where λr is now the rotational friction constant and
I is the moment of inertia (analogous to the mass in translational motion).

The Brownian motion time for non-spherical molecules are however complicated by both
the rotations around the long molecular axis and the large-angle rotations around the shorter
molecular axis. It is clear that the larger the moment of inertia the longer the particle maintains
its correlation in angular velocity before it enters the diffusive regime. The cross-over from
Brownian to non-Brownian behaviour in a flowing suspension is controlled by the rotational
Peclet number Pe = γ̇ /Dr where Dr is the rotary diffusivity of the particles and γ̇ is the
strain rate.

The rotational Brownian motion time is not to be confused with another relaxation
time τu which is the time it takes to relax slowly to the Boltzmann distribution over the
angular coordinates, given by exp[−U(n · u)/kT ] where U(n · u) is the mean-field potential
experienced by the molecule. The characteristic time-scale τu is approximately

√
I⊥/kT if we

assume rotational motions to be dominated by large-angle rotations about the short molecular
axis. This is the regime where our kinetic equation is based upon and leads to the mode
relaxation times evaluated in section 2.

It might be tempting to think that the solution for a disc-like molecule in rotational
Brownian motion will yield only a trivial modification to the correlation time of a long rod
(where the relaxation times for rotations around the long molecular axis is very small and can
be neglected). In fact, as we shall see, due to both rotations along and perpendicular to the
molecular axis in discotic nematics, non-trivial solutions for the Brownian motion time can be
found.

For a discotic nematic phase, due to the significant moment of inertia parallel to the
director axis I‖, the axial angular momentum I‖φ̇ along the molecular axis may be comparable
to or larger than that perpendicular to the axis. From our analysis of the kinetic equation (11)
before, we have the following equation:

I⊥ω̇α = −λ⊥ωα + ξα − I‖ψ̇(ω × u)α (133)

where for simplicity we have assumed zero external torque and external flow. I‖ψ̇ can be
assumed to be almost constant since there is virtually no torque acting on the axis and hence
no angular acceleration along the director. Clearly the description for rotational motion is
more complicated due to its vectorial form and the precessional term I‖ψ̇(ω ×u), giving non-
trivial solutions as I‖/I⊥ is non-negligible. Expanding the cross product in tensorial form,
equation (133) becomes

ω̇α = −λαβωβ +
ξα

I⊥
(134)

where

λαβ = λ⊥
I⊥

δαβ + A2ψ̇εαβγ uγ with A = √
I‖/I⊥. (135)

The problem is similar to solving small oscillation dynamics using normal mode
expansion. The general motion is then a superposition of the various normal modes with
the mode frequencies and their amplitudes given by the eigenvalues and eigenvectors of the
matrix respectively. Setting the equation in homogeneous form (ξα/I⊥ = 0) and assuming
that the director coordinate uγ remains approximately stationary on the fast time-scale of ω,
we have, writing Kγ = A2ψ̇uγ ,

ω̇1

ω̇2

ω̇3


 =


−λ⊥/I⊥ −K3 K2

K3 −λ⊥/I⊥ −K1

−K2 K1 −λ⊥/I⊥




ω1

ω2

ω3


 . (136)
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Here we note that the matrix is non-symmetric, and complex eigenvalues are to be
expected. Direct diagonalization of the matrix numerically gives the following eigenvalues
and eigenvectors:

λ1 = −λ⊥
I⊥

, λ2,3 = −λ⊥
I⊥

± iA2ψ̇ (137)

and the eigenvectors are

v1 =

 1

K2/K1

K3/K1


 , v2,3 =


(±iA2ψ̇K3 − K1K2)

/(
K2

1 + K2
3

)
1

(∓iA2ψ̇K1 − K2K3)
/(

K2
1 + K2

3

)

 . (138)

It is clear that the eigenvalues become degenerate λ1 = λ2 = λ3 = −λ⊥/I⊥ for the case of
rod-like molecules, indicating the presence of a single Brownian motion time corresponding
to only rotations of the long molecular axis.

The angular velocity components can be written as

ω1 = e−t/τ

[
1 − 2

K1K2

K2
1 + K2

3

cos(A2ψ̇t) − 2
K3A

2ψ̇

K2
1 + K2

3

sin(A2ψ̇t)

]

ω2 = e−t/τ

[
K2

K1
+ 2 cos(A2ψ̇t)

]
(139)

ω3 = e−t/τ

[
K3

K1
− 2

K2K3

K2
1 + K2

3

cos(A2ψ̇t) + 2
K1A

2ψ̇

K2
1 + K2

3

sin(A2ψ̇t)

]
where we have defined τ = I⊥/λ⊥ as the rotational Brownian motion time.

The stochastic force ξα introduces inhomogeneity into the equation and the full solution
of the inhomogeneous equation can be obtained by integrating over the stochastic term in
equation (134). For simplicity we consider just one of the angular velocity components ω2

and its correlation function 〈ω2(t)ω2(0)〉. Careful analysis leads to the following expression
for the angular velocity correlation function:

〈ω2(t)ω2(0)〉 = kT

I⊥

(
K2

K1

)2

e−t/τ +
kT

I⊥
e−t/τ cos(t/τψ)

+
kT

I⊥

(
K2

K1

)
e−t/τ

[
ττψ

τ 2
ψ + τ 2

][
2
τψ

τ
cos(t/τψ) − sin(t/τψ)

]

+
kT

I⊥
e−t/τ

[
ττψ

τ 2
ψ + τ 2

][
τψ

τ
cos(t/τψ) − sin(t/τψ)

]
. (140)

The first term gives the natural decay of the correlation function for the angular velocity which
depends on the geometrical projection ratio K2/K1. The imaginary part of the eigenvalues
gives rise to the precessional term cos(t/τψ) where the precessional period τψ = 1/A2ψ̇ is
introduced. Explicit comparison between the two time-scales can be made:

τ

τψ

= kT I⊥
λ2

⊥

I‖
I⊥

(141)

The first term on the right-hand side corresponds to the small parameter α we had defined
in equation (16); therefore, we conclude that τ is significantly smaller than τψ for disc-like
molecules. Rearranging the terms we have for t < τ � τψ ,

〈ω2(t)ω2(0)〉 = kT

I⊥
e−t/τ

[(
K2

K1

)2

+ 2
K2

K1

(
1 +

K2

K1

)]
. (142)
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Note that except for the prefactor in terms of K’s, equation (142) resembles (132) in
translational motion. We conclude that the system remains heavily damped, and the effective
correlation or relaxation time is the shorter time-scale τ . This corresponds to the assumption
that thermalization occurs on a time-scale much shorter with respect to the time for appreciable
changes in positional distances. This occurs when the rotational friction constant λ⊥ is
large and is often called the high friction limit. Note that the rotational Brownian motion
time has a linear dependence on the friction constant λ⊥ which is to be contrasted with the
mode relaxation time found in section 2 which has an inverse dependence on λ⊥.

Equation (131) therefore becomes

λ⊥ ≈ 1

kT

∫ ∞

0
〈ξ 2(0)〉ens e−t/τw dt (143)

giving the final form of friction constant after time-averaging:

λ⊥ ≈
√

I⊥
kT

√
〈ξ 2(0)〉ens (144)

where 〈ξ 2〉ens denotes ensemble averaging of the stochastic torques acting on the molecules.

5.3. Ensemble averaging

As mentioned before, the idea of ensemble averaging is essential when considering
macroscopic properties of any dense liquid. The ensemble averaging of the torques in
equation (143) describes microscopically the interactions of the molecules with various random
potentials exerted by the surrounding molecules. A reasonable expression for 〈ξ 2(0)〉ens for
molecule 1 can be written as

〈ξ 2〉ens 
 N2
∫

∂1U(1, 2) · ∂1U(1, 3)W3(1, 2, 3)d(1)d(2)d(3) (145)

where ∂1k = εkiju1i∂/∂u1j , d(1) = dr1 du1 and W3(1, 2, 3) is the three-particle angular
distribution function. ∂1U(1, 2) describes the torque exerted by molecule 2 on molecule 1 due
to their pair interaction potential U(1, 2), and the same holds for ∂1U(1, 3).

To evaluate this ensemble we need to have a microscopic model of the molecular pair
potential that acts on a particular pair of nematic molecules. We begin this by giving a brief
review of the mean-field description of the intermolecular forces, followed by an attempt
to build a phenomenological model that goes beyond mean-field regime and consider more
realistic effects such as short-range orientational correlations and the excluded volume effects,
paying specific attention to the case of a discotic nematic.

5.3.1. Nematic intermolecular forces. The molecular theory of the nematics has been an
intense field of research in the past decades, using advanced statistical approaches such as the
density functional theory. Two main lines were pursued to derive the various thermodynamic
quantities that agree with the experimental results.

(1) Treating the intermolecular attraction forces as anisotropic and the intermolecular
repulsions as isotropic to first approximation, which serves as a positive pressure. The
result is temperature-dependent of course.

(2) In suspensions of anisotropic particles the nematic order arises purely from short-range
anisotropic repulsive forces (exclusion volume effects in the Onsager approach). The high
density of the liquid is established by the intermolecular attractions, which are assumed
to be isotropic.
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Here we demonstrate a combined approach that takes into account both anisotropic
intermolecular attractive forces depending on the orientation of the interacting molecules, but
at the same time considers the anisotropic repulsive potential which arises from the exclusion
volume effects. We consider the following expression for the effective uniaxial potential [55]

Veff(ui , rij ,uj ) = Viso − J1(r)(ui · uj )
2 − J2(r)[(ui · rij )

2 + (uj · rij )
2]

−J3(r)[(ui ·uj )(ui · rij )(uj · rij )] (146)

where Viso represents an isotropic dispersion potential independent of u’s and the various J ’s
represent the orientation-dependent coupling strengths which can be expressed in terms of
the electric dipole and quadrupole matrix elements. u denotes the molecular director while
rij = ri −rj denotes the molecular distance from particle i to j . See figure 4 for the geometric
illustration. Chandrasekhar et al [56] had argued that the potential arises mainly from the
dispersion forces which have r−6 or r−8/3 dependence on the intermolecular separation for
dipole–dipole and dipole–quadrupole interactions, respectively. The permanent dipoles are
found to play a minor role in providing the stability of the nematic phase (although dipole–
dipole forces are much stronger than the van der Waals, in practice, dipolar molecules in liquid
always form very strong dimers).

As shown by Baron and Gelbart [57], the predominant orientational interaction in nematics
must be the isotropic dispersion attraction modulated by the anisotropic molecular hard core.
The isotropic part of the dispersion interaction is generally greater than the anisotropic part
because it is proportional to the average molecular polarizability. The anisotropy of this overall
potential comes mainly from the asymmetric molecular shape. Thus this effective potential is
a combination of intermolecular attraction and repulsion,

Veff(1, 2) = Jatt(r12)�(r12 − ξ12) (147)

where the step function �(r12 − ξ12) determines the steric cut-off.

5.3.2. Mean-field theory: the Maier–Saupe potential. The simplest molecular theory of
the nematics can be developed in the context of a mean-field approximation. By mean-
field approximation we mean that all correlations between different molecules, such as the
fluctuations in the short-range order (mutual alignment of two neighbouring molecules), are
ignored. This is obviously a crude approximation but it does enable one to obtain very simple
and useful expressions for the free energy.

In this section, we demonstrate how the mean-field approximation can be established
starting with a completely general pairwise intermolecular interaction potential. One
appropriate model potential is to write it as an expansion in terms of Legendre polynomials
(spherical invariants) Plm [55], depending only on the unit vectors u1 = r1/|r1|,u12 =
r12/|r12|, etc:

U(u1,u12,u2) =
∑
l,m

Jlm(u12)Plm(u1,u12,u2). (148)

To obtain the single molecule potential U in the mean-field approximation it is necessary
to take successive averages of the intermolecular potential U12. Firstly we note that in the
nematic phase there is no positional order and the molecular centres are distributed randomly.
If one neglects the positional correlations, the interaction potential can be further simplified
by averaging over all values of the intermolecular unit vector u12:

Ũ (u1,u2) =
∫

U(u1,u12,u2) du12. (149)
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The final mean-field potential UMF (u1) is obtained by averaging over all orientations of the
second molecule u2:

UMF (u1) =
∫

Ũ (u1,u2)w1(u2) du2 (150)

where ui specifies the orientation of the molecule i, and

w1(ui ) = 1

Z
e−βUMF (ui ) (151)

denotes the single-particle distribution function that depends only on the molecular orientation.
Equation (151) says that in the mean-field approximation, that is, neglecting pair correlations
between u1 and u2 in (150), each molecule feels some average angular potential produced by
all other molecules in the system. The usual Maier–Saupe potential JP2(n ·ui ) is obtained
via this averaging process with respect to the first non-polar term in the Legendre polynomial
expansion of the intermolecular potential.

5.4. Model potential for discotic nematics

Realistic intermolecular interaction potentials for mesogenic molecules can be very complex
and are generally unknown. At the same time molecular theories based on simple model
potentials usually offer good qualitative solutions when describing some general properties
of liquid crystals that are not sensitive to the details on the interaction. In this section, we
propose a simple nematic potential to model molecular interactions in a discotic nematic liquid
crystal within the mean-field approximation. This leads to an explicit expression of the torque
autocorrelation function in equation (145).

1. Model pair potential: previous investigations on the intermolecular interaction potential
of a discotic nematic had focused mainly on the regime close to nematic–isotropic (N–I)
transition [58]. A reasonable assumption is that the nematic order arises primarily from the
short-range and highly anisotropic repulsive forces between the molecules. We consider a
modification of the nematic potential in equation (146) which captures the essential physics
of the molecular interactions in a discotic nematic phase [55, 57]:

U(1, 2) 
 − G

r6
12

− 1

r6
12

J1(u1 · u2)
2 − 1

r6
12

{J2[(u1 · u12)
2 + (u2 ·u12)

2]

+ J3[(u1 ·u2)(u1 ·u12)(u2 · r12)]} (152)

where G describes the isotropic attraction and the constants J1, J2 and J3 describe the
anisotropic contribution to the pair interaction potential and depend on the anisotropy of
the molecular shape. Following previous discussion, we know that a more precise description
of the intermolecular interaction has to include higher order Legendre’s polynomials such
as the P4 terms [56], but such terms are usually sufficiently small to be ignored in our
model. J2 accounts for the different interaction energies corresponding to different orientation
configurations of the two molecules. For instance for long rods, J2 has to be negative since
the orientation configuration is not energetically favourable, and likewise positive for disc-like
molecules. The most important weakness of the model (152) is its uniform r−6

12 dependence on
molecular separation. We shall see that the specific form of this power law is truly irrelevant,
since the dominant contribution to the final integrals is arising from the potential cutoff at
the molecular excluded volume cutoff. However, particular dependence on the molecular
thickness (the closest approach distance) may not be captured accurately in such a model.

2. Excluded volume effects: these effects are determined by hard-core repulsion that does
not allow molecules to penetrate each other. It is interesting to note that by doing so we



Topical Review R139

1

1

2 2

12

12u
u

u ud

d

L
r

r

D

Figure 4. The scheme of excluded volume modelling for rod-like and disc-like particles, leading
to the orientation dependent expression for the minimal distance separating the two centres of
mass, ξ12(u1,u2,u12) of equation (155). The analogous expression for two rods would read
ξ12 = d + 1

2 (L − d)
[
(u1 · u12)

2 + (u2 · u12)
2
]

and has a minimum (ξ12 = d) when both u1 and
u2⊥u12.

already go beyond the formal mean-field approximation, since at low densities it is possible
to express the free energy of the system in the form of the virial expansion [59]:

βF = ρ ln ρ + ρ

∫
w1(u1)[ln w1(u1) − 1] du1

+
1

2
ρ2
∫

w1(u1)w1(u2) · B(u1,u2) du1 du2 + · · · (153)

where B(u1,u2) is the excluded volume for the two particles:

B(u1,u2) =
∫

dr12(e
−βUsteric(1,2) − 1) (154)

and Usteric(1, 2) is the steric repulsion potential.
In equation (153) all terms are purely entropic in origin since the system is athermal by

definition. The second term is the additional orientational entropy which is a consequence
of the anisotropic shape of the rigid bodies, and are thus absent in an isotropic liquid. The
third term is the packing entropy that can be thought of intuitively as a result of the excluded
volumes effects that restrict the molecular motion and therefore reducing the total entropy of
the liquid. At low volume fraction of the particles, the higher order terms in the expansion
can be neglected. The steric repulsion potential is equivalent to introducing a steric cut-off
length. For two disc-like molecules this can be expressed phenomenologically as the distance
between COM’s when the two particles are in contact:

ξ12 = D +
(d − D)

2
[(u1 · u12)

2 + (u2 ·u12)
2], (155)

where d and D are the thickness and diameter of the discs respectively, and u12 is the unit
vector along molecular separation line, u12 = r12/|r12|. The expression can be checked by
considering the extreme limits of the molecular directors being parallel or perpendicular to
the intermolecular unit vector u12. For instance, the shortest separation, ξ12 = d is achieved
when u1‖u2‖u12.

3. Three-particle correlation functions: the simplest form of the three-particle angular
distribution function in equation (145) can be expressed in the Kirkwood approximation [1],
which neglects three-body collisions:

W3(1, 2, 3) 
 W2(1, 2)W2(2, 3)W2(1, 3). (156)

Such approximation are known to work well at short and long ranges, but is less accurate at
a medium range of separation. For a long-rod system, its has been shown by Onsager [59]
that virial coefficients higher than second order vanish in the asymptotic limit as the length
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of the rod goes to infinity. This means that higher order correlations such as the three-body
correlations are negligible, and the Kirkwood’s approximation is a good limit for infinitely long
rods system. Such may not be the case for a discotic phase, when three-body correlations have
to be taken into account [58]. One might envisage the use of a better approximation scheme
using integral equations such as the Percus–Yevick or Hyper-Netted Chain approximations.

For simplicity we neglect the three-particle collisions, which gives

W3(1, 2, 3) 
 e−βU(1,2) e−βU(1,3) e−βU(2,3)w(u1)w(u2)w(u3) (157)

where w(ui ) is the single-particle equilibrium orientation distribution function for molecule
i, and β = 1/kT as usual.

We return to the evaluation of the integral in equation (145). We first change the variables
from dr1, dr2 and dr3 to dr12, dr13 and dr1. The integrand can be expressed in terms of r12

and r13 only, which can be integrated over r12 and r13 (only the relevant terms are shown):∫
1

r4
12r

4
13

exp

{
k(1, 2)

r6
12

+
k(1, 3)

r6
13

+
k(2, 3)

|r13 − r12|6
}

dr12 dr13 (158)

where

k(1, 2) = β{G + J1(u1 · u2)
2 + J2[(u1 · u12)

2 + (u2 · u12)
2]

+ J3[(u1 ·u2)(u1 ·u12)(u2 · r12)]}, etc. (159)

The integrand clearly approaches a maximum towards the cutoff length r12 = ξ12 = d, r13 =
ξ13 = d. From equation (155) this requires all the molecular axes to be parallel to
intermolecular vectors u12,u13 and u23. If we take small deviations from this conformation
only, and u12 being in the middle between u1 and u2 etc, then equation (159) simplifies
to terms containing only two constants, G̃ = G + 1

2J2 + 1
4J3 and J̃ = J1 + 1

2J2 + 1
4J3.

Equation (145) can be evaluated approximately by observing the sharp rise of the integrand at
the end of the integration interval. We therefore obtain

〈ξ 2(0)〉 ≈ (kT )2

6d3
J̃ 2 e3βG̃

∫
du1 du2 du3

· ∂1(u1 ·u2)
2∂1(u1 · u3)

2 eβJ̃ [(u1 ·u2)
2+(u1 · u3)

2+(u2 · u3)
2]w(u1)w(u2)w(u3)

[2G̃′ + J̃ ′(u1 ·u2)2 + J̃ ′(u2 · u3)2][3G̃′ + 2J̃ ′(u1 · u3)2 + J̃ ′(u2 · u3)2]
(160)

where G̃′ = G̃/d6 and J̃ ′ = J̃ /d6 have the dimensionality of energy.
The equilibrium single-particle orientation distribution function w(1) is proportional to

the mean-field nematic potential U(n ·u1), where

U(u1 ·n) =
∫

U(u1,u2, r12)w(u2 · n) dr12 du2. (161)

That is, the mean-field potential experienced by the first molecule is just the pair interaction
energy averaged over the position and orientation of the second molecule. For the discotic
nematic phase with interaction energy defined in equation (152) we obtain the mean-field
potential with the Maier–Saupe form:

U(u1 ·n) ≈ const − 4π

9d3
(2J1 + J3)S2(u1 ·n)2. (162)

Equation (160) can be evaluated using again the saddle-point approximation. The integrand
possesses a clear maximum point when all molecular axes u1,u2 and u3 are (i) parallel to each
other and (ii) aligned parallel to the average macroscopic director n. Another simplification
derives from the fact that the anisotropic contribution to the pair potential is usually much
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smaller than the isotropic contribution I1 � G [55]. With these in mind we obtain a final
estimate for the microscopic rotational friction constant λ⊥:

λ⊥ ≈ C

√
I⊥
kT

exp

{
3(G̃′ + J̃ ′)

2kT

}
(163)

where the constant C contains a few microscopic parameters that are not of interest to us. The
crucial result from the above analysis is the Arrhenius dependence with the activation energy
which corresponds to overcoming the nematic barrier given by the isotropic potential G̃′ and
the much weaker anisotropic correction J̃ ′ during ensemble averaging. The factor

√
I⊥/kT

takes into account the time averaging process. To summarize the main facts reviewed in this
section as follows.

(1) Due to the gyroscopic effects, the discs exhibit more complicated form of velocity
correlation function. The dynamical evolution of the particle rotation exhibit multiple
time-scales, but its rotational Brownian motion time is described predominantly by the
ratio of the moment of inertia to the rotational frictional constant.

(2) The microscopic friction coefficient shows an exponential temperature dependence with a
large activation energy determined mainly by the isotropic part of the interaction potential.
This seems to account for the observed temperature variation of the Leslie coefficients
[60]. Incorporating orientational correlation effects generates a more precise mean-field
potential which can be determined self-consistently via numerical methods. One can
foresee higher order correlations such as three-body or four-body correlation effects to
render even more accurate results and an improved approximation for the friction constant
and the Leslie coefficients.

6. Spatially inhomogeneous nematic order

In this section, we consider the effects of spatial inhomogeneities by incorporating the
distortions of nematic order using a non-local nematic potential. In the limit of weak flow
and mild distortions, this reveals the microscopic origin of the Ericksen stress in the complete
Leslie–Ericksen theory. This also provides a new, kinetic, approach to nematic curvature
elasticity and gives the microscopic expressions for Frank elastic constants.

The original LE theory assumes that the molecules have a short relaxation time so that
their orientation distribution always retains its uniaxial equilibrium ‘shape’, while the local
axis of symmetry gets rotated by the flow. The rotational dynamics of the nematics is then
characterized by the local director n and the constant order parameter. However, it seems
inevitable that at a higher shear rate, the flow may induce significant gradients in the continuous
director field and creates spatial inhomogeneities or textures in the sample. In this case, the
orientation distribution may be distorted by flow into a non-uniaxial configuration, and the
formulation of stress tensor in director variable may not be feasible. Instead, a more adequate
formalism [53, 61] will be to consider the dynamics of nematics in terms of the evolution of
order parameter tensor as in equation (80).

Another circumstance where distortional effects might become important arise in nematics
ridden with defects such as disclination lines and point defects which may be generated due
to shear flow. An even more common situation arises due to anchoring condition, when the
director field near the surface is forced to align with the walls. This disrupts the molecular
packing and incurs a free energy penalty, the minimization of which determines the equilibrium
or static dependence of n(r). Indeed, the neglect of such distortional stress leads to failures to
account for rheological properties of liquid crystalline polymers with domain structures. It was
shown that the microscopic theory described so far predicts the formation of disclinations due
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to inhomogeneous director tumbling which are however constantly annihilated and reformed
[53]. Clearly, without distortional elasticity, one cannot describe the defects of nematic order
and eventually explain a steady-state network of disclinations, which seems to arise in reality.

Most attempts to account for the distortional elasticity were based on phenomenological
models. After the original formulation of the Ericksen stress, Edwards and Beris [62]
constructed an ad hoc general expression of Frank elasticity in tensorial form. More recently
Tsuji and Rey [61] added distortional energy using the Landau–de Gennes free energy to
the kinetic equation but their work does not discuss the stress tensor. Furthermore the use
of Landau–de Gennes energy expansion proves to be doubtful for systems with moderately
high-order parameters typical of a nematic liquid crystal. This highlights the necessity of a
molecular theory. In this section, we demonstrate that by using a non-local nematic potential
to model the effects of distortional elasticity, we can derive a new stress tensor and kinetic
equation governing the time evolution of the order parameter tensor. The final results are
consistent with the complete LE theory in the limit of weak flow and small distortions.

6.1. Ericksen stress

In contrast to a globally uniform director field, a positional variation in the director n(r)

introduces new distortion free energy in the system which tends to minimize the spatial
gradient of the director. The result is an additional contribution to the stress known as the
Ericksen stress [43]. In the usual small-motion approximation, this distortional stress gives
rise to second-order spatial deviations of n which can be discarded in the formulation of stress
tensor. This picture however breaks down at a sufficiently strong shear flow when the local
variation in n becomes non-vanishing. Before we embark on a microscopic description of
this new effects, we shall first give a brief outline of the definitions of Frank elastic energy and
the Ericksen stress.

The classical expression for the distortion free energy takes the following form [43]

Fd = 1
2K1(∇ · n)2 + 1

2K2(n · ∇ × n)2 + 1
2K3(n × ∇ × n)2 (164)

where the Frank (curvature elasticity) constants Ki (i = 1, 2, 3) are associated with the three
basic types of deformation: splay, bend and twist. For simplicity, we now make a useful
one-constant approximation: K1 = K2 = K3 = K . The free energy then takes the form

Fd = 1
2K{(∇n)2 + (∇ × n)2} = 1

2K(∇αnβ)(∇αnβ) (165)

after integration by parts in which we assumed that the surface terms are unimportant in
this analysis. Note that this, as well as the one-constant approximation above, are serious
limitations; we only adopt them here to preserve clarity of arguments and ideas, as well as
make closer contact with the classical de Gennes’ monograph (which also follows this route).
We can consider a small change in the total free energy δFtot due to a local change in the
director, and a material distortion of the fluid which leaves the director orientation invariant
[43]. Any changes in the system may be decomposed into these independent changes.

1. Variation in embedded order: consider the variation n(r) → δn(r), at a fixed point
in space, which produces a change in the free energy

δFd =
∫ {

∂F

∂nβ

δnβ +
∂Fd

δ(∂αnβ)
∂α(δnβ)

}
dr. (166)

Integrate the second term by parts and neglect the surface term

δFd =
∫ {

∂F

∂nβ

− ∇α

(
∂Fd

δ(∇αnβ)

)}
δnβ dr. (167)
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We can define the terms in the bracket as a molecular field

hβ = −∂Fd

∂nβ

+ ∂απαβ, where παβ = δFd

δ(∂αnβ)
= δFd

δgαβ

. (168)

Equation (168) implies that in equilibrium (in the absence of external fields), δFd must vanish
and the director must be at each point parallel to the molecular field.

2. Material distortion: we now consider a distortion of the material which preserves the
value of the director r −→ r′ = r + ε(r) with n′(r′) = n(r). The change in the free energy
then becomes

δFd =
∫

σd
αβ∂βεα dr, where σd

αβ = −παγ ∂βnγ (169)

is the distortion stress tensor. If we impose the incompressibility condition for the fluid, we
have to introduce a Lagrange multiplier, the pressure p, then the Ericksen stress tensor arises
as a result:

σ e
αβ = σd

αβ − pδαβ. (170)

Using the one-constant approximation and substituting equation (165) into (168), we have the
full stress tensor acting on the element of nematic fluid,

σαβ = σ e
αβ + σv

αβ = −K∇αni∇βni + σv
αβ (171)

where σv
αβ is the viscous stress given by equation (47), and the symmetric Ericksen stress is

written in the limit of isotropic curvature (Frank) elasticity. One of the aims of this section
is to demonstrate that this term can be accounted for by a suitable microscopic theory, and
derive an approximate microscopic expression for the Frank constant K.

6.2. Kinetic equation with distortions

One can extend the original theory to include distortional energy. We expect modifications to
two major components of the theory: the kinetic equation and the microscopic stress tensor.
For a nematic with distorted director configurations, one could consider an additional non-local
nematic potential, as proposed by Marrucci and Greco [63]. This potential accounts for spatial
variations of the molecular orientation distribution, and represents the molecular interaction
energy in a gradually varying orientational mean-field. The effective nematic potential in the
presence of spatial inhomogeneities therefore consists of the Maier–Saupe mean-field potential
and the Marrucci–Greco nematic potential UMG :

Ũ (u) = UMS + UMG = − 3
2JSijuiuj − 1

16JL2∇2Sijuiuj (172)

where J is a non-dimensional constant representing the nematic mean-field strength. L
denotes the characteristic length-scale for molecular interaction. Sij is the order parameter
tensor defined in equation (80). This expression of modified Maier–Saupe potential is a
generalized version of the earlier and more familiar equation (88), which applies to the spatially
homogeneous case [19, 63]. Here UMG takes care of distortion over the neighbourhood of the
molecule, and it can be derived in the limit of small distortion expansion.

Note that we have chosen to write the potential in second-order tensorial form since its
relation to the stress tensor can be established more easily. This approach is completely
equivalent to our microscopic theory using the distribution function discussed in previous
sections. From our kinetic equation (68), we see that the Marrucci–Greco potential generates
an additional term:

α2
∫

∂k

(
w

∂kUMG

kT

)(
uiuj − 1

3
δij

)
du

= α2 JL2

8kT
(∇2Siα〈uαuj 〉 + 〈uiuα〉∇2Sαj − 2∇2Sαβ〈uαuβuiuj 〉). (173)
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6.3. Nonlocal stress tensor and curvature elasticity

A natural approach to find the modified stress tensor is to return to equation (64). We see that
the UMG term generates an additional stress due to distortions:

ρ

〈
p2

p2 + 1
uα

∂UMG

∂uβ

− 1

p2 + 1
uβ

∂UMG

∂uα

− p̃uαuβum

∂UMG

∂um

〉

= − 1

8
ρJL2

(
p2

p2 + 1
Siα∇2Siβ − 1

p2 + 1
Siβ∇2Siα − p̃〈uαuβuiuj 〉∇2Sij

)
.

(174)

Following our earlier approach, we take the symmetric part of this contribution and
discover that it can be related to equation (174). This can be written explicitly in terms of
the velocity gradient and gives the symmetric part of the viscous stress tensor. This approach
however generates no additional terms which can account for the symmetric Ericksen stress
K∇αni∇βni in equation (171). We conclude that this straightforward approach does not give
a self-consistent microscopic theory that can account for the Ericksen stress, and a more
elaborate formalism is required to evaluate the microscopic stress tensor.

Considering that the Ericksen stress can be regarded as an elastic stress due to distortions,
we can invoke the principle of virtual work [23], and calculate the elastic stress σE

αβ from the
reaction of the nematic to a rapid virtual deformation δεαβ(r).

δF =
∫

v

σE
αβδεαβ dV (175)

where V is the volume of the bulk sample. By calculating the change in the free energy, we
can extract the elastic stress.

The free energy of the nematic liquid crystal can be written in terms of the molecules
orientation distribution function w(u):

F = ρ

∫
v

dV

∫
du(kT w ln w + wŨ). (176)

This gives

δF = ρ

∫
v

dV

∫
du [kT δw ln w + kT δw + δ(wUMS) + δ(wUMG)] . (177)

We only have to concern ourselves with the UMG term, since the other terms produce exactly
the same microscopic stress tensor as given in equation (64). We therefore have

δFMG = ρ

∫
v

dV

∫
δ (wUMG) du

= −ρJL2

16

∫
v

dV

∫
δ(w∇2Sijuiuj ) du

= −ρJL2

16

∫
v

dV δ(∇2SijSij )

= −ρJL2

16

∫
v

dV (∇2Sij δSij + δ∇2SijSij ). (178)

The term δ∇2Sij represents the energy for additional spatial distortions due to the strain field.
This can be calculated explicitly to give

δ∇2Sij =
(

∂∇2Sij

∂t
+ v · ∇∇2Sij

)
δt = ∇2δSij + v · ∇∇2Sij δt

= ∇2δSij − δεαβ∇α∇βSij − ∇αδεαβ∇βSij (179)
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where we have used integration by parts and neglecting the surface terms. Integrating by parts
again we have∫ (

δ∇2Sij

)
Sij dV =

∫
dV (∇2Sij δSij − δεαβ∇α∇βSijSij + δεαβAαβ)

+
∫

�

dSα(∇αδSijSij − ∇αSij δSij − δεαβ∇βSijSij )

where Aαβ = ∇αSij∇βSij , and the contribution to the virtual work

δFMG = −ρJL2

16

{∫
dV (2∇2Sij δSij − δεαβ∇α∇βSijSij + δεαβAαβ)

+
∫

�

dSα(∇αδSijSij − ∇αSij δSij − δεαβ∇βSijSij )

}
. (180)

The surface integral can be put to zero since δε, δSij and ∇δSij vanish on the surface boundary.
The variation in the order parameter tensor Sij can be calculated from the kinetic

equation (68) by neglecting the diffusion and potential terms for a rapid virtual deformation
[23]. In this case,

δw = ∂w

∂t
δt = −α∂k(
kw)δt (181)

where Ω = 1
2 p̃u × gs · u + 1

2u × ga · u is the residue flow field, as before. We then have

δSij =
∫

uiuj δw du = α

∫
∂k(uiuj )
kδtw du

= α

{
p̃

2
δεs

imSjm +
p̃

2
δεs

jmSim − p̃δεs
nm〈unumuiuj 〉 +

1

2
δεa

imSjm +
1

2
δεa

jmSim

}
(182)

where δεs and δεa are the symmetric and asymmetric strain tensor respectively. Using these
in equation (175), we finally obtain the part of the elastic stress due to distortion only:

σE
αβ = −ρJL2

8

{
p2

p2 + 1
Sαj∇2Sβj − 1

p2 + 1
Sβj∇2Sαj

− p̃∇2Sij 〈uiujuαuβ〉
}

− ρUkT L2

32
(Aαβ − ∇α∇βSijSij ). (183)

The free energy approach therefore produces nearly identical stress tensor as in equation (174),
except with an additional term − 1

32ρJL2(Aαβ − ∇α∇βSijSij ) which is symmetric. We shall
see that this term possesses the correct symmetry, as the Ericksen stress, and justifies our use
of the virtual deformation principle. This approach also shows explicitly that the addition of
distortional elasticity introduces non-local effects into the stress tensor, which now depends on
position due to the non-homogeneous Marrucci–Greco potential. This situation differs from
a uniform nematic liquid crystal when the principle of locality is assumed which means that
both the flow and the nematic configurations are homogeneous [23].

We can gain some physical insights by considering the symmetric part of the stress tensor
due to Marrucci–Greco potential UMG. From equation (183) this may be written as

σ s
αβ = −ρJL2p̃α

16
{Sαj∇2Sβj + Sβj∇2Sαj − 2∇2Sij 〈uiujuαuβ〉}

− ρJL2

32
(Aαβ − ∇α∇βSijSij ). (184)
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The first term on the right-hand side, together with the original Maier–Saupe term in
equation (72), can be replaced by the flow term in the kinetic equation (173). The full
symmetric stress tensor with distortions then becomes

σ s
αβ = −ρkT p̃

2α2

(
∂Sαβ

∂t
− Gαβ

)
− ρJL2

32
(Aαβ − ∇α∇βSijSij ) (185)

where Gij follows from equation (76). Comparing with the full Leslie–Ericksen stress tensor
in equation (171) we see that the first term on the right-hand side produces the viscous stress,
while the second term must be equivalent to the Ericksen stress. Equation (185) therefore
expresses the reaction of the nematic liquid crystal in terms of velocity gradient (as in the
original LE theory) and the local variation of nematic configurations, which gives rise to
non-local nature of the Ericksen stress.

Using the expression for the uniaxial order parameter tensor Sij and assuming that the
magnitude of scalar order parameter S2 is constant, we have

∇αSij∇βSij − ∇α∇βSijSij = 8
3S2

2∇αni∇βni − 2
3S2∇αni∇βni

− 4
3S2

2ni∇α∇βni − 2
3S2ni∇α∇βni

= 4S2
2∇αni∇βni (186)

where ni∇jni = 0 is frequently used and the last line is obtained from integration by parts.
It is important to note at this point that in recent years a number of theories have appeared,
which examine the additional effects of variation ∇S2, or leaving the nematic variables in
the tensor form, as Sij (r, t) [64]. Clearly, our approach is adaptable for these continuum
theories although here we rigidly follow the path towards the LE model. We therefore obtain
a microscopic expression for the average Frank constant:

K = 1
8ρJL2S2

2 (187)

in the limit of elastic isotropy (one constant approximation) and assuming a type of Marrucci–
Greco distortional potential.

This expression has several attractive features. It depends on the molecular interaction
length and the nematic order parameter in the appropriate way. However we would expect that
the Frank constant depends on the molecular aspect ratio p and differs in general for discotic
or rod-like nematic phase. Evidently this only applies in the limit of elastic anisotropy when
K1 �= K3 . Marrucci and Greco [63] demonstrated that this is a result of assuming that the
length of the rods is long compared to the molecular interaction length L. On the other hand if
the interaction length is much larger than the molecular length, the ‘interaction neighbourhood’
becomes essentially spherical and the one-constant approximation becomes fairly accurate.
We did not attempt here to pursue the more accurate derivation of Frank elasticity from
the kinetic theory, firstly because an excellent equilibrium microscopic models already exist
[65, 66] and secondly because our limited aim has been the LE theory of viscosity. No doubt
this is an interesting possible avenue of new research.

We note that with the incorporation of Ericksen stress, the Leslie stress tensor becomes
non-symmetric in general, and hence angular momentum is not conserved in the usual sense.
This gives rise to a mean-field torque which is to be expected since the mean-field potential
exerts a torque on the molecules when they are forced away by flow. We therefore expect the
usual balance of torque equation to be modified [43]:∫

εαµρ

{
rρσ

e
βα + nρπ

e
βα

}
dSβ −

∫
(n × h)µ dr = 0. (188)

This balance is required for the conservation of the total angular momentum in static
equilibrium. The first term on the left-hand side denotes the surface torque due to elastic
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distortions in the director field h given by equation (168). There are two contributions to the
surface torques, one from the Ericksen stress and one deriving from the tensor π . The second
term denotes the torque due to viscous processes, where h is given by equation (48). In static
equilibrium this term vanishes when the director is aligned parallel to the molecular field, but
the total torque becomes non-vanishing due to the surface torque.
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